On maximal injective subalgebras

Author:
Mingchu Gao

Journal:
Proc. Amer. Math. Soc. **138** (2010), 2065-2070

MSC (2010):
Primary 46L10

Published electronically:
January 7, 2010

MathSciNet review:
2596043

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a type von Neumann subalgebra in a type factor with the faithful trace such that , for . Moreover, suppose has the asymptotically orthogonal property in after tensoring the finite von Neumann algebra , for all . Then we show that is maximal injective in the infinite tensor product von Neumann algebra . As a consequence, we get the following result. Let be a sequence of free groups with () generators. Let be the masa of group von Neumann algebra generated by a generator of or by the sum of all generators and their inverses of the group. Then is maximal injective in the infinite tensor product von Neumann algebra .

**[CFRW]**J. Cameron, J. Fang, M. Ravichandran, and S. White. The radical masa in a free group factor is maximal injective. arXiv: 0810.3906v1[math.OA], 21 Oct. 2008.**[Co]**A. Connes,*Classification of injective factors. Cases 𝐼𝐼₁, 𝐼𝐼_{∞}, 𝐼𝐼𝐼_{𝜆}, 𝜆̸=1*, Ann. of Math. (2)**104**(1976), no. 1, 73–115. MR**0454659****[Fa]**Junsheng Fang,*On maximal injective subalgebras of tensor products of von Neumann algebras*, J. Funct. Anal.**244**(2007), no. 1, 277–288. MR**2294484**, 10.1016/j.jfa.2006.12.006**[Ge]**Li Ming Ge,*On “Problems on von Neumann algebras by R. Kadison, 1967”*, Acta Math. Sin. (Engl. Ser.)**19**(2003), no. 3, 619–624. With a previously unpublished manuscript by Kadison; International Workshop on Operator Algebra and Operator Theory (Linfen, 2001). MR**2014042**, 10.1007/s10114-003-0279-x**[Ge1]**Liming Ge,*On maximal injective subalgebras of factors*, Adv. Math.**118**(1996), no. 1, 34–70. MR**1375951**, 10.1006/aima.1996.0017**[GK]**L. Ge and R. Kadison,*On tensor products for von Neumann algebras*, Invent. Math.**123**(1996), no. 3, 453–466. MR**1383957**, 10.1007/s002220050036**[Hou]**ChengJun Hou,*On maximal injective subalgebras in a 𝑤Γ factor*, Sci. China Ser. A**51**(2008), no. 11, 2089–2096. MR**2447433**, 10.1007/s11425-008-0059-2**[Ka]**R. Kadison. Problems on von Neumann algebras. Notes of Baton Rouge Conference, unpublished, 1967.**[KR]**Richard V. Kadison and John R. Ringrose,*Fundamentals of the theory of operator algebras. Vol. II*, Graduate Studies in Mathematics, vol. 16, American Mathematical Society, Providence, RI, 1997. Advanced theory; Corrected reprint of the 1986 original. MR**1468230****[Po]**Sorin Popa,*Maximal injective subalgebras in factors associated with free groups*, Adv. in Math.**50**(1983), no. 1, 27–48. MR**720738**, 10.1016/0001-8708(83)90033-6**[Sh]**Junhao Shen,*Maximal injective subalgebras of tensor products of free group factors*, J. Funct. Anal.**240**(2006), no. 2, 334–348. MR**2261686**, 10.1016/j.jfa.2006.03.017**[SS]**Allan M. Sinclair and Roger R. Smith,*Finite von Neumann algebras and masas*, London Mathematical Society Lecture Note Series, vol. 351, Cambridge University Press, Cambridge, 2008. MR**2433341****[SZ]**Şerban Strătilă and László Zsidó,*The commutation theorem for tensor products over von Neumann algebras*, J. Funct. Anal.**165**(1999), no. 2, 293–346. MR**1698940**, 10.1006/jfan.1999.3408

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2010):
46L10

Retrieve articles in all journals with MSC (2010): 46L10

Additional Information

**Mingchu Gao**

Affiliation:
Department of Mathematics, Louisiana College, Pineville, Louisiana 71359

Email:
gao@lacollege.edu

DOI:
https://doi.org/10.1090/S0002-9939-10-10219-6

Keywords:
Finite von Neumann algebras,
maximal injective subalgebras,
tensor products,
free group von Neumann algebras.

Received by editor(s):
March 16, 2009

Received by editor(s) in revised form:
September 20, 2009

Published electronically:
January 7, 2010

Communicated by:
Marius Junge

Article copyright:
© Copyright 2010
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.