Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Tensoring generalized characters with the Steinberg character


Authors: G. Hiss and A. Zalesski
Journal: Proc. Amer. Math. Soc. 138 (2010), 1907-1921
MSC (2010): Primary 20C33, 20C20, 20G05, 20G40
DOI: https://doi.org/10.1090/S0002-9939-10-10322-0
Published electronically: February 16, 2010
MathSciNet review: 2596024
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \mathbf{G}$ be a reductive connected algebraic group over an algebraic closure of a finite field of characteristic $ p$. Let $ F$ be a Frobenius endomorphism on $ \mathbf{G}$ and write $ G := \mathbf{G}^F$ for the corresponding finite group of Lie type.

We consider projective characters of $ G$ in characteristic $ p$ of the form $ St \cdot \beta$, where $ \beta$ is an irreducible Brauer character and $ St$ the Steinberg character of $ G$.

Let $ M$ be a rational $ \mathbf{G}$-module affording $ \beta$ on restriction to $ G$. We say that $ M$ is $ G$-regular if for every $ F$-stable maximal torus $ \mathbf{T}$ distinct weight spaces of $ M$ are non-isomorphic $ \mathbf{T}^F$-modules. We show that if $ M$ is $ G$-regular of dimension $ d$, then the lift of $ St \cdot \beta$ decomposes as a sum of $ d$ regular characters of $ G$.


References [Enhancements On Off] (What's this?)

  • 1. J. Ballard, Projective modules for finite Chevalley groups, Trans. Amer. Math. Soc. 245(1978), 221 - 249. MR 511407 (81d:20010)
  • 2. N. Bourbaki, Groupes et algèbres de Lie, Chaps. IV-VI, Actualités Scientifiques et Industrielles, No. 1337, Hermann, Paris, 1968. MR 0240238 (39:1590)
  • 3. R. Carter, Finite groups of Lie type: Conjugacy classes and complex characters, Wiley, New York, 1985. MR 794307 (87d:20060)
  • 4. L. Chastkofsky, Projective characters for finite Chevalley groups, J. Algebra 69(1981), 347 - 357. MR 617083 (83j:20045)
  • 5. C. W. Curtis and I. Reiner, Methods of representation theory with applications to finite groups and orders, Vols. 1, 2, Wiley, New York, 1981. MR 632548 (82i:20001)
  • 6. P. Deligne and G. Lusztig, Duality for representations of a reductive group over a finite field. II, J. Algebra 81(1983), 540 - 545. MR 700298 (85b:20058)
  • 7. F. Digne and J. Michel, Representations of finite groups of Lie type, London Math. Soc. Student Texts, 21, Cambridge Univ. Press, 1991. MR 1118841 (92g:20063)
  • 8. R. Guralnick and Pham Huu Tiep, Finite simple unisingular groups of Lie type, J. Group Theory 6(2003), 271 - 310. MR 1983368 (2005a:20024)
  • 9. G. Hiss and A. Zalesski, The Weil-Steinberg character of finite classical groups, with an appendix by Olivier Brunat, Represent. Theory 13(2009), 427 - 459.
  • 10. J. Humphreys, Deligne-Lustzig characters and principal indecomposable modules, J. Algebra 62(1980), 299 - 303. MR 563229 (81g:20022)
  • 11. J. Humphreys, Modular representations of finite groups of Lie type, Cambridge Univ. Press, Cambridge, 2006. MR 2199819 (2007f:20023)
  • 12. J. C. Jantzen, Über das Decompositionsverhalten gewisser modularer Darstellungen halbeinfacher Gruppen und ihrer Lie-algebren, J. Algebra 49(1977), 441 - 469. MR 0486093 (58:5881)
  • 13. G. Lusztig, The discrete series of $ {\rm GL}_n$ over a finite field, Annals of Mathematical Studies, 81, Princeton Univ. Press, Princeton, New Jersey, 1974. MR 0382419 (52:3303)
  • 14. G. Seitz, Bounds for dimensions of weight spaces of maximal tori, in: Linear Algebraic Groups and Their Representations, Contemporary Mathematics, 153, Amer. Math. Soc., Providence, RI, 1993, 157 - 161. MR 1247503 (94m:20097)
  • 15. T. Springer, Relèvement de Brauer et représentations paraboliques de $ GL_n(F_q)$ (d'après G. Lusztig), Séminaire BOURBAKI, 26ème année 1973/74, no. 441, 89 - 113. Lecture Notes in Math., 431, Springer, Berlin, 1975. MR 0422395 (54:10385)
  • 16. T. Springer and R. Steinberg, Conjugacy classes, in: A. Borel et al., Seminar on Algebraic Groups and Related Finite Groups, Springer-Verlag, Berlin, 1970. MR 0268192 (42:3091)
  • 17. R. Steinberg, Lectures on Chevalley groups, lecture notes, Yale University, New Haven, CT, 1968. MR 0466335 (57:6215)
  • 18. W.J. Wong, Representations of Chevalley groups in characteristic $ p$, Nagoya J. Math. 45(1972), 39 - 78. MR 0302776 (46:1919)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 20C33, 20C20, 20G05, 20G40

Retrieve articles in all journals with MSC (2010): 20C33, 20C20, 20G05, 20G40


Additional Information

G. Hiss
Affiliation: Lehrstuhl D für Mathematik, RWTH Aachen University, 52056 Aachen, Germany
Email: gerhard.hiss@math.rwth-aachen.de

A. Zalesski
Affiliation: Departimento di Matematica e Applicazioni, Universitá degli Studi di Milano- Bicocca, via Roberto Cozzi 53, 20125, Milano, Italy
Email: alexandre.zalesski@gmail.com

DOI: https://doi.org/10.1090/S0002-9939-10-10322-0
Keywords: Projective characters, Chevalley groups, Steinberg character
Received by editor(s): January 25, 2009
Published electronically: February 16, 2010
Communicated by: Jonathan I. Hall
Article copyright: © Copyright 2010 American Mathematical Society

American Mathematical Society