Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Notes on the regularity of harmonic map systems


Authors: Tao Huang and Changyou Wang
Journal: Proc. Amer. Math. Soc. 138 (2010), 2015-2023
MSC (2010): Primary 35J50, 35K40; Secondary 58E20
DOI: https://doi.org/10.1090/S0002-9939-10-10344-X
Published electronically: February 5, 2010
MathSciNet review: 2596037
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we provide an alternative proof of $ C^{1,\alpha}$-regularity of continuous weak solutions to the system of harmonic maps or heat flow of harmonic maps by Riesz potential estimates between Morrey spaces.


References [Enhancements On Off] (What's this?)

  • 1. D. R. Adams, A note on Riesz potentials, Duke Math. J. 42 (1975), no. 4, 765-778. MR 0458158 (56:16361)
  • 2. F. Bethuel, On the singular set of stationary harmonic maps. Manuscripta Math. 78 (1993), no. 4, 417-443. MR 1208652 (94a:58047)
  • 3. Y. Chen, J. Li, F. H. Lin, Partial regularity for weak heat flows into spheres. Comm. Pure Appl. Math. 48 (1995), no. 4, 429-448. MR 1324408 (96e:58039)
  • 4. Lawrence C. Evans, Partial regularity for stationary harmonic maps into spheres. Arch. Rational Mech. Anal. 116 (1991), no. 2, 101-113. MR 1143435 (93m:58026)
  • 5. J. Eells, J. Sampson, Harmonic mappings of Riemannian manifolds. Amer. J. Math. 86 (1964), 109-160. MR 0164306 (29:1603)
  • 6. M. Feldman, Partial regularity for harmonic maps of evolution into spheres. Comm. Partial Differential Equations 19 (1994), no. 5-6, 761-790. MR 1274539 (95i:58057)
  • 7. F. Hélein, Régularité des applications faiblement harmoniques entre une surface et une variété riemannienne (French) [Regularity of weakly harmonic maps between a surface and a Riemannian manifold]. C. R. Acad. Sci. Paris Sér. I Math. 312 (1991), no. 8, 591-596. MR 1101039 (92e:58055)
  • 8. M. Giaquinta, E. Giusti, The singular set of the minima of certain quadratic functionals. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 11 (1984), no. 1, 45-55. MR 752579 (86a:49086)
  • 9. M. Giaquinta, S. Hildebrandt, A priori estimates for harmonic mappings. J. Reine Angew. Math. 336 (1982), 124-164. MR 671325 (84b:58035)
  • 10. S. Hildebrandt, H. Kaul, K. Widman, An existence theorem for harmonic mappings of Riemannian manifolds. Acta Math. 138 (1977), no. 1-2, 1-16. MR 0433502 (55:6478)
  • 11. J. Jost, Harmonic mappings between Riemannian manifolds. Proceedings of the Centre for Mathematical Analysis, Australian National University, 4, Australian National University, Centre for Mathematical Analysis, Canberra, 1984. MR 756629 (86b:58030)
  • 12. R. Schoen, Analytic aspects of the harmonic map problem. Seminar on nonlinear partial differential equations (Berkeley, Calif., 1983), 321-358, Math. Sci. Res. Inst. Publ., 2, Springer, New York, 1984. MR 765241 (86b:58032)
  • 13. R. Richard, K. Uhlenbeck, A regularity theory for harmonic maps. J. Differential Geom. 17 (1982), no. 2, 307-335. MR 664498 (84b:58037a)
  • 14. E. M. Stein, Singular integrals and differentiability properties of functions, Princeton University Press, Princeton, New Jersey, 1970. MR 0290095 (44:7280)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 35J50, 35K40, 58E20

Retrieve articles in all journals with MSC (2010): 35J50, 35K40, 58E20


Additional Information

Tao Huang
Affiliation: Department of Mathematics, University of Kentucky, Lexington, Kentucky 40506
Email: thuang@ms.uky.edu

Changyou Wang
Affiliation: Department of Mathematics, University of Kentucky, Lexington, Kentucky 40506
Email: cywang@ms.uky.edu

DOI: https://doi.org/10.1090/S0002-9939-10-10344-X
Received by editor(s): June 12, 2009
Published electronically: February 5, 2010
Additional Notes: This work was partially supported by NSF grant 0601162
Communicated by: Chuu-Lian Terng
Article copyright: © Copyright 2010 American Mathematical Society

American Mathematical Society