Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the endofiniteness of a key module over pure semisimple rings


Authors: Nguyen Viet Dung and José Luis García
Journal: Proc. Amer. Math. Soc. 138 (2010), 2269-2278
MSC (2010): Primary 16G10; Secondary 16D70, 16D90
DOI: https://doi.org/10.1090/S0002-9939-10-10098-7
Published electronically: February 23, 2010
MathSciNet review: 2607855
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ R$ be a left pure semisimple ring such that there are no non-zero homomorphisms from preinjective modules to non-preinjective indecomposable modules in $ R$-mod, and let $ W$ be the left key $ R$-module; i.e., $ W$ is the direct sum of all non-isomorphic non-preinjective indecomposable direct summands of products of preinjective left $ R$-modules. We show that if the module $ W$ is endofinite, then $ R$ is a ring of finite representation type. This settles a question considered in [L. Angeleri Hügel, A key module over pure-semisimple hereditary rings, J. Algebra 307 (2007), 361-376] for hereditary rings.


References [Enhancements On Off] (What's this?)

  • 1. F. W. Anderson and K. R. Fuller, ``Rings and Categories of Modules'', Springer-Verlag, New York, 1992. MR 1245487 (94i:16001)
  • 2. L. Angeleri Hügel, A key module over pure-semisimple hereditary rings, J. Algebra 307 (2007), 361-376. MR 2278060 (2007j:16021)
  • 3. L. Angeleri Hügel and H. Valenta, A duality result for almost split sequences, Colloq. Math. 80 (1999), 267-292. MR 1703897 (2000h:16025)
  • 4. M. Auslander, Representation theory of Artin algebras. II, Comm. Algebra 1 (1974), 269-310. MR 0349747 (50:2240)
  • 5. M. Auslander, Functors and morphisms determined by objects, Lecture Notes in Pure and Appl. Math., 37, Dekker, New York, 1978, 1-244. MR 0480688 (58:844)
  • 6. M. Auslander and S. O. Smalø, Preprojective modules over Artin algebras, J. Algebra 66 (1980), 61-122. MR 591246 (83a:16039)
  • 7. W. W. Crawley-Boevey, Modules of finite length over their endomorphism rings, in ``Representations of algebras and related topics'' (Eds. S. Brenner and H. Tachikawa), London Math. Soc. Lecture Note Series, Vol. 168, Cambridge University Press, 1992, pp. 127-184. MR 1211479 (94h:16018)
  • 8. W. W. Crawley-Boevey, Locally finitely presented additive categories, Comm. Algebra 22 (1994), 1641-1674. MR 1264733 (95h:18009)
  • 9. N. V. Dung, Strong preinjective partitions and almost split morphisms, J. Pure Appl. Algebra 158 (2001), 131-150. MR 1822837 (2002c:16019)
  • 10. N. V. Dung and J. L. García, Additive categories of locally finite representation type, J. Algebra 238 (2001), 200-238. MR 1822190 (2002f:18021)
  • 11. N. V. Dung and J. L. García, Copure semisimple categories and almost split maps, J. Pure Appl. Algebra 188 (2004), 73-94. MR 2030807 (2004m:18009)
  • 12. N. V. Dung and J. L. García, Endofinite modules and pure semisimple rings, J. Algebra 289 (2005), 574-593. MR 2142386 (2006h:16036)
  • 13. N. V. Dung and J. L. García, Preinjective modules over pure semisimple rings, J. Pure Appl. Algebra 212 (2008), 1207-1221. MR 2387596 (2009b:16031)
  • 14. P. Eklof and J. Trlifaj, How to make Ext vanish, Bull. London Math. Soc. 33 (2001), 41-51. MR 1798574 (2001i:16015)
  • 15. K. R. Fuller, On rings whose left modules are direct sums of finitely generated modules, Proc. Amer. Math. Soc. 54 (1976), 39-44. MR 0393133 (52:13943)
  • 16. K. R. Fuller and I. Reiten, Note on rings of finite representation type and decompositions of modules, Proc. Amer. Math. Soc. 50 (1975), 92-94. MR 0376768 (51:12943)
  • 17. I. Herzog, A test for finite representation type, J. Pure Appl. Algebra 95 (1994), 151-182. MR 1293051 (95h:16011)
  • 18. B. Huisgen-Zimmermann, Strong preinjective partitions and representation type of Artinian rings, Proc. Amer. Math. Soc. 109 (1990), 309-322. MR 1007520 (90i:16026)
  • 19. B. Huisgen-Zimmermann, Purity, algebraic compactness, direct sum decompositions, and representation type, in ``Infinite Length Modules'' (Eds. H. Krause and C. M. Ringel), Trends Math., Birkhäuser, Basel, 2000, pp. 331-367. MR 1789225 (2002c:16008)
  • 20. B. Huisgen-Zimmermann and W. Zimmermann, On the sparsity of representations of rings of pure global dimension zero, Trans. Amer. Math. Soc. 320 (1990), 695-711. MR 965304 (90k:16036)
  • 21. H. Krause and M. Saorín, On minimal approximations of modules, in ``Trends in the Representation Theory of Finite-Dimensional Algebras'' (Eds. E. L. Green and B. Huisgen-Zimmermann), Contemp. Math., 229, Amer. Math. Soc., Providence, RI, 1998, pp. 227-236. MR 1676223 (99m:16002)
  • 22. F. Okoh, Direct sum decomposition of the product of preinjective modules over right pure semisimple hereditary rings, Comm. Algebra 30 (2002), 3037-3043. MR 1908256 (2003d:16015)
  • 23. I. Reiten and C. M. Ringel, Infinite dimensional representations of canonical algebras, Canad. J. Math 58 (2006), 180-224. MR 2195596 (2006k:16006)
  • 24. C. M. Ringel and H. Tachikawa, QF-3 rings, J. Reine Angew. Math. 272 (1974), 49-72. MR 0379578 (52:483)
  • 25. D. Simson, Partial Coxeter functors and right pure semisimple hereditary rings, J. Algebra 71 (1981), 195-218. MR 627434 (82m:16031)
  • 26. D. Simson, On right pure semisimple hereditary rings and an Artin problem, J. Pure Appl. Algebra 104 (1995), 313-332. MR 1361578 (96m:16018)
  • 27. D. Simson, A class of potential counterexamples to the pure semisimplicity conjecture, in ``Advances in Algebra and Model Theory'' (Eds. M. Droste and R. Göbel), Algebra, Logic and Applications, Gordon and Breach, Amsterdam, 1997, pp. 345-373. MR 1683552 (2000d:16019)
  • 28. D. Simson, An Artin problem for division ring extensions and the pure semisimplicity conjecture. II, J. Algebra 227 (2000), 670-705. MR 1759841 (2002c:16025)
  • 29. B. Stenström, ``Rings of Quotients'', Springer-Verlag, New York-Heidelberg, 1975. MR 0389953 (52:10782)
  • 30. R. Wisbauer, ``Foundations of Module and Ring Theory'', Algebra, Logic and Applications, Vol. 3, Gordon and Breach, Philadelphia, PA, 1991. MR 1144522 (92i:16001)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 16G10, 16D70, 16D90

Retrieve articles in all journals with MSC (2010): 16G10, 16D70, 16D90


Additional Information

Nguyen Viet Dung
Affiliation: Department of Mathematics, Ohio University - Zanesville, Zanesville, Ohio 43701
Email: nguyend2@ohiou.edu

José Luis García
Affiliation: Department of Mathematics, University of Murcia, 30100 Murcia, Spain
Email: jlgarcia@um.es

DOI: https://doi.org/10.1090/S0002-9939-10-10098-7
Keywords: Pure semisimple ring, ring of finite representation type, preinjective module, endofinite module.
Received by editor(s): February 5, 2009
Received by editor(s) in revised form: June 17, 2009
Published electronically: February 23, 2010
Additional Notes: The second author was supported by the Fundación Séneca of the C.A.R.M
Communicated by: Birge Huisgen-Zimmermann
Article copyright: © Copyright 2010 American Mathematical Society

American Mathematical Society