Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Persistence of the non-twist torus in nearly integrable hamiltonian systems

Authors: Junxiang Xu and Jiangong You
Journal: Proc. Amer. Math. Soc. 138 (2010), 2385-2395
MSC (2010): Primary 34D10, 34D23; Secondary 34C27
Published electronically: February 18, 2010
MathSciNet review: 2607868
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we consider analytic nearly integrable hamiltonian systems, and prove that if the frequency mapping has nonzero Brouwer topological degree at some Diophantine frequency, then the invariant torus with this frequency persists under small perturbations.

References [Enhancements On Off] (What's this?)

  • 1. V. I. Arnold. Proof of a theorem of A. N. Kolmogorov on the persistence of quasi-periodic motions under small perturbations of the Hamiltonian, Russ. Math. Surv. 18:5(1963), 9-36. MR 0163025 (29:328)
  • 2. V. I. Arnold. Dynamical systems, Encyclopaedia of Mathematical Sciences, 3, Springer-Verlag, 1988. MR 0923953 (88m:58043)
  • 3. H. W. Broer, G. B. Huitema, F. Takens. Unfoldings of quasi-perodic tori. Mem. Amer. Math. Soc. 83:421(1990), 1-81. MR 1041003
  • 4. C.-Q. Cheng. Birkhoff-Kolmogorov-Arnold-Moser tori in convex Hamiltonian systems. Comm. Math. Phys. 177(1996), 529-559. MR 1385075 (97a:58161)
  • 5. L.H. Eliasson. Perturbations of stable invariant tori for Hamiltonian systems. Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 15(1988), 115-147. MR 1001032 (91b:58060)
  • 6. A. N. Kolmogorov. On conservation of conditionally periodic motions for a small change in Hamilton's function. Dokl. Akad. Nauk SSSR 98:4(1954), 527-530. MR 0068687 (16:924c)
  • 7. J. Moser. Convergent series expansions for quasi-periodic motions. Math. Ann. 169(1967), 136-176. MR 0208078 (34:7888)
  • 8. J. Pöschel. A lecture on the classical KAM theorem. School on dynamical systems. May 1992.
  • 9. J. Pöschel. Integrability of Hamiltonian systems on Cantor sets. Comm. Pure Appl. Math. 35(1982), 653-696. MR 668410 (84d:58039)
  • 10. H. Rüssmann. On twist hamiltonian. Talk in the Colloque International: Mécanique Céleste et Systémes hamiltoniens, Marseille, 1990.
  • 11. H. Rüssmann. Nondegeneracy in the perturbation theory of integrable dynamical systems, Stochastics, Algebra and Analysis in Classical and Quantum Dynamics, Math. and Its Appl., 59, 211-223, Kluwer Academic, 1990. MR 1052709 (91j:58140)
  • 12. H. Rüssmann. Invariant tori in non-degenerate nearly integrable Hamiltonian systems. Regular and Chaotic Dynamics 6:2(2001), 119-204. MR 1843664 (2002g:37083)
  • 13. M. B. Sevryuk. KAM-stable Hamiltonians. J. Dynamics Control Systems 1(1995), 351-366. MR 1354540 (96m:58222)
  • 14. H. Whitney. Analytic extensions of differentiable functions defined in closed sets. Trans. Amer. Math. Soc. 36(1934), 63-89. MR 1501735
  • 15. Junxiang Xu, Jiangong You. Gevrey-smoothness of invariant tori for analytic nearly integrable Hamiltonian systems under Rüssmann's non-degeneracy condition. Journal of Differential Equations 235(2007), 609-622. MR 2317497 (2008b:37100)
  • 16. J. Xu, J. You, Q. Qiu. Invariant tori for nearly integrable Hamiltonian systems with degeneracy. Mathematische Zeitschrift 226(1997), 375-387. MR 1483538 (98k:58196)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 34D10, 34D23, 34C27

Retrieve articles in all journals with MSC (2010): 34D10, 34D23, 34C27

Additional Information

Junxiang Xu
Affiliation: Department of Mathematics, Southeast University, Nanjing 210096, People’s Republic of China

Jiangong You
Affiliation: Department of Mathematics, Nanjing University, Nanjing 210093, People’s Republic of China

Keywords: Hamiltonian system, KAM iteration, invariant tori, non-degeneracy condition
Received by editor(s): February 19, 2009
Received by editor(s) in revised form: August 3, 2009
Published electronically: February 18, 2010
Additional Notes: The first author was supported by the National Natural Science Foundation of China (10571027)
The second author was partially supported by the National Basic Research Program of China (973 Program, 2007CB814800) and by the NNSF of China (Grant No. 10531050)
Communicated by: Yingfei Yi
Article copyright: © Copyright 2010 American Mathematical Society

American Mathematical Society