Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Upper bounds for series involving moderate and small deviations


Author: Aurel Spataru
Journal: Proc. Amer. Math. Soc. 138 (2010), 2601-2606
MSC (2010): Primary 60G50; Secondary 60E15, 60F15
DOI: https://doi.org/10.1090/S0002-9939-10-10247-0
Published electronically: February 26, 2010
MathSciNet review: 2607890
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ X,~X_{1},~X_{2},...$ be i.i.d. random variables with $ 0<EX^{2}=\sigma ^{2}<\infty $ and $ EX=0,$ and set $ S_{n}=X_{1}+\cdots+X_{n}.$ We prove Paley-type inequalities for series involving probabilities of moderate deviations $ P(\left\vert S_{n}\right\vert \geq \lambda \sqrt{n\log n}),$ $ \lambda >0,$ and probabilities of small deviations $ P(\left\vert S_{n}\right\vert \geq$ $ \lambda \sqrt{n\log \log n})$, $ \lambda >\sigma \sqrt{2}.$


References [Enhancements On Off] (What's this?)

  • 1. Chow, Y. S. and Lai, T. L. (1978). Paley-type inequalities and convergence rates related to the law of large numbers and extended renewal theory. Z. Wahrscheinlichkeitstheorie verw. Gebiete 45, 1-19. MR 507969 (80c:60048)
  • 2. Davis, J. A. (1968). Convergence rates for the law of the iterated logarithm. Ann. Math. Statist. 39, 1479-1485. MR 0253411 (40:6626)
  • 3. Davis, J. A. (1968). Convergence rates for probabilities of moderate deviations. Ann. Math. Statist. 39, 2016-2028. MR 0235599 (38:3903)
  • 4. Erdős, P. (1949). On a theorem of Hsu and Robbins. Ann. Math. Statist. 20, 286-291. MR 0030714 (11:40f)
  • 5. Erdős, P. (1950). Remark on my paper ``On a theorem of Hsu and Robbins''. Ann. Math. Statist. 21, 138. MR 0032970 (11:375b)
  • 6. Gut, A. and Spătaru, A. (2000). Precise asymptotics in the Baum-Katz and Davis laws of large numbers. J. Math. Anal. Appl. 248, 233-246. MR 1772594 (2001g:60064)
  • 7. Gut, A. and Spătaru, A. (2000). Precise asymptotics in the law of the iterated logarithm. Ann. Probab. 28, 1870-1883. MR 1813846 (2001m:60100)
  • 8. Hsu, P. L. and Robbins, H. (1947). Complete convergence and the law of large numbers. Proc. Nat. Acad. Sci. U.S.A. 33, 25-31. MR 0019852 (8:470e)
  • 9. Katz, M. L. (1963). The probability in the tail of a distribution. Ann. Math. Statist. 34, 312-318. MR 0144369 (26:1914)
  • 10. Loève, M. (1977). Probability Theory. I, 4th edition. Springer-Verlag, Berlin. MR 0651017 (58:31324a)
  • 11. Nagaev, S. V. (1965). Some limit theorems for large deviations. Theor. Probab. Appl. 10, 214-235. MR 0185644 (32:3106)
  • 12. Petrov, V. V. (1975). Sums of Independent Random Variables. Springer-Verlag, Berlin. MR 0388499 (52:9335)
  • 13. Pruss, A. R. (1997). A two-sided estimate in the Hsu-Robbins-Erdős law of large numbers. Stochastic Process. Appl. 70, 173-180. MR 1475661 (99c:60100)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 60G50, 60E15, 60F15

Retrieve articles in all journals with MSC (2010): 60G50, 60E15, 60F15


Additional Information

Aurel Spataru
Affiliation: Casa Academiei Romane, Institute of Mathematical Statistics and Applied Mathematics, Calea 13 Septembrie, nr. 13, 76100 Bucharest, Romania

DOI: https://doi.org/10.1090/S0002-9939-10-10247-0
Keywords: Tail probabilities of sums of i.i.d. random variables, Paley-type inequalities, moderate deviations, small deviations, law of the iterated logarithm.
Received by editor(s): June 7, 2009
Received by editor(s) in revised form: October 9, 2009
Published electronically: February 26, 2010
Communicated by: Richard C. Bradley
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society