Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Generalizations of Gershgorin disks and polynomial zeros


Author: A. Melman
Journal: Proc. Amer. Math. Soc. 138 (2010), 2349-2364
MSC (2010): Primary 15A18, 12D10
DOI: https://doi.org/10.1090/S0002-9939-10-10294-9
Published electronically: March 10, 2010
MathSciNet review: 2607864
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We derive inclusion regions for the eigenvalues of a general complex matrix that are generalizations of Gershgorin disks, along with nonsingularity conditions. We then apply these results to the location of zeros of polynomials.


References [Enhancements On Off] (What's this?)

  • 1. Alpin, Yu.A., Chien, Mao-Ting, and Yeh, Lina. The numerical radius and bounds for zeros of a polynomial.
    Proc. Amer. Math. Soc., 131 (2003), no. 3, 725-730. MR 1937409 (2003h:26021)
  • 2. Barnett, S. Congenial matrices.
    Linear Algebra Appl., 41 (1981), 277-298. MR 815264 (86m:15004)
  • 3. Brauer, A. Limits for the characteristic roots of a matrix. II.
    Duke Math. J., 14 (1947), 21-26. MR 0020540 (8:559i)
  • 4. Bini, D.A., Gemignani, L., and Pan, V.Y. Improved initialization of the accelerated and robust QR-like polynomial root-finding.
    Electron. Trans. Numer. Anal., 17 (2004), 195-205. MR 2113008 (2006a:65076)
  • 5. Boese, F.G., and Luther, W.J. A note on a classical bound for the moduli of all zeros of a polynomial.
    IEEE Trans. Automat. Control, 34 (1989), no. 9, 998-1001. MR 1007431 (90h:30015)
  • 6. Calvetti, D., Reichel, L., and Sgallari, F. A modified companion matrix method based on Newton polynomials.
    Fast algorithms for structured matrices: theory and applications (South Hadley, MA, 2001), 179-186, Contemp. Math., 323, Amer. Math. Soc., Providence, RI, 2003. MR 1999394 (2004h:65042)
  • 7. Carstensen, C. Linear construction of companion matrices.
    Linear Algebra Appl., 149 (1991), 191-214. MR 1092878 (92c:15014)
  • 8. Cvetković, L., Kostić, V., and Varga, R.S. A new Geršgorin-type eigenvalue inclusion set.
    Electron. Trans. Numer. Anal., 18 (2004), 73-80 (electronic). MR 2114449 (2005j:65038)
  • 9. Cvetković, L. and Kostić, V. Between Geršgorin and minimal Geršgorin sets.
    J. Comput. Appl. Math., 196 (2006), no. 2, 452-458. MR 2249436 (2007e:15018)
  • 10. Dashnic, L. S., and Zusmanovich, M. S. O nekotoryh kriteriyah regulyarnosti matric i lokalizacii ih spektra.
    Zh. Vychisl. Matem. i Matem. Fiz. 5 (1970), 1092-1097.
  • 11. Datt, B., and Govil, N.K. On the location of the zeros of a polynomial.
    J. Approx. Theory, 24 (1978), no. 1, 78-82. MR 510922 (80g:30002)
  • 12. Dehmer, M. On the location of zeros of complex polynomials.
    J. Inequal. Pure Appl. Math., 7 (2006), Article 26, 13 pp. MR 2217189 (2006m:30011)
  • 13. Edelman, A., and Murakami, H. Polynomial roots from companion matrix eigenvalues.
    Math. Comp., 64 (1995), 763-776. MR 1262279 (95f:65075)
  • 14. Fiedler, M. A note on companion matrices.
    Linear Algebra Appl., 372 (2003), 325-331. MR 1999154 (2004g:15017)
  • 15. Fujii, Masatoshi, and Kubo, Fumio. Buzano's inequality and bounds for roots of algebraic equations.
    Proc. Amer. Math. Soc., 117 (1993), no. 2, 359-361. MR 1088441 (93d:47014)
  • 16. Gemignani, L. Structured matrix methods for polynomial root-finding.
    ISSAC 2007, 175-180, ACM, New York, 2007. MR 2396200 (2009f:65113)
  • 17. Gerschgorin, S. Über die Abgrenzung der Eigenwerte einer Matrix. Izv. Akad. Nauk SSSR, Ser. Fiz.-Mat., 6 (1931), 749-754.
  • 18. Good, I.J. The colleague matrix, a Chebyshev analogue of the companion matrix.
    Quart. J. Math. Oxford Ser. (2), 12 (1961), 61-68. MR 0132755 (24:A2592)
  • 19. Horn, R.A., and Johnson, C.R. Matrix Analysis.
    Cambridge University Press, Cambridge, 1988. MR 1084815 (91i:15001)
  • 20. Joyal, A., Labelle, G., and Rahman, Q.I. On the location of zeros of polynomials.
    Canad. Math. Bull., 10 (1967), 53-63. MR 0213513 (35:4374)
  • 21. Kittaneh, F. A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix.
    Studia Math., 158 (2003), no. 1, 11-17. MR 2014548 (2004i:15022)
  • 22. Kittaneh, F. Bounds and a majorization for the real parts of the zeros of polynomials.
    Proc. Amer. Math. Soc., 135 (2007), 659-664. MR 2262860 (2008k:30002)
  • 23. Kolotilina, L.Yu. Generalizations of the Ostrowski-Brauer theorem.
    Linear Algebra Appl., 364 (2003), 65-80. MR 1971087 (2004c:15033)
  • 24. Lawrence, J.D. A Catalog of Special Plane Curves.
    Dover Publications, Inc., New York, 1972.
  • 25. Linden, H. Bounds for the zeros of polynomials from eigenvalues and singular values of some companion matrices.
    Linear Algebra Appl., 271 (1998), 41-82. MR 1485162 (98m:65059)
  • 26. Linden, H. Numerical radii of some companion matrices and bounds for the zeros of polynomials.
    Analytic and geometric inequalities and applications, 205-229, Math. Appl., 478, Kluwer Acad. Publ., Dordrecht, 1999. MR 1785871 (2001i:15031)
  • 27. Linden, H. Containment regions for zeros of polynomials from numerical ranges of companion matrices.
    Linear Algebra Appl., 350 (2002), 125-145. MR 1906750 (2003d:30008)
  • 28. Marden, M. Geometry of polynomials.
    Mathematical Surveys, No. 3, American Mathematical Society, Providence, RI, 1966. MR 0225972 (37:1562)
  • 29. Melman, A. Spectral inclusion sets for structured matrices.
    Linear Algebra Appl., 431 (2009), 633-656. MR 2535539
  • 30. Melman, A. An alternative to the Brauer set.
    Linear Multilinear Algebra, July 2009, DOI:10.1080/03081080902722733, to appear.
  • 31. Neumaier, A. Enclosing clusters of zeros of polynomials.
    J. Comput. Appl. Math., 156 (2003), 389-401. MR 1995854 (2004g:30009)
  • 32. Pan, V.Y. Approximating complex polynomial zeros: Modified Weyl's quadtree construction and improved Newton's iteration.
    Real computation and complexity (Schloss Dagstuhl, 1998). J. Complexity, 16 (2000), 213-264. MR 1762403 (2001g:65063)
  • 33. Peña, J.M. A class of $ P$-matrices with applications to the localization of the eigenvalues of a real matrix.
    SIAM J. Matrix Anal. Appl., 22 (2001), 1027-1037. MR 1824055 (2001m:15046)
  • 34. Sun, Yeong-Jeu, and Hsieh, Jer-Guang. A note on the circular bound of polynomial zeros.
    IEEE Trans. Circuits Syst. I: Fund. Theory Appl., 43 (1996), no. 6, 476-478. MR 1395264 (97a:30004)
  • 35. Varga, R.S. Geršgorin and His Circles.
    Springer-Verlag, Berlin, 2004. MR 2093409 (2005h:15002)
  • 36. Winkler, J.R. Properties of the companion matrix resultant for Bernstein polynomials.
    Uncertainty in geometric computations, 185-198, Kluwer Internat. Ser. Engrg. Comput. Sci., 704, Kluwer Acad. Publ., Boston, MA, 2002. MR 2063185
  • 37. Zeheb, E. On the largest modulus of polynomial zeros.
    IEEE Trans. Circuits Syst., 38 (1991), 333-337.
  • 38. Zilović, M.S., Roytman, M., Combettes, P.L., and Swamy, M.N.S. A bound for the zeros of polynomials.
    IEEE Trans. Circuits Syst. I: Fund. Theory Appl., 38 (1992), no. 3, 476-478.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 15A18, 12D10

Retrieve articles in all journals with MSC (2010): 15A18, 12D10


Additional Information

A. Melman
Affiliation: Department of Applied Mathematics, School of Engineering, Santa Clara University, Santa Clara, California 95053
Email: amelman@scu.edu

DOI: https://doi.org/10.1090/S0002-9939-10-10294-9
Received by editor(s): June 11, 2009
Received by editor(s) in revised form: October 25, 2009, and November 16, 2009
Published electronically: March 10, 2010
Communicated by: Walter Van Assche
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society