ZEROS OF THE EISENSTEIN SERIES E_2

ABDELKRIM EL BASRAOUI AND ABDELLAH SEBBAR

(Communicated by Keno Ono)

Abstract. In this paper we investigate the zeros of the Eisenstein series E_2. In particular, we prove that E_2 has infinitely many SL$_2$(Z)-inequivalent zeros in the upper half-plane \mathcal{H}, yet none in the standard fundamental \mathcal{F}. Furthermore, we go on to investigate other fundamental regions in the upper half-plane \mathcal{H} for which there do or do not exist zeros of E_2. We establish infinitely many such regions containing a zero of E_2 and infinitely many which do not.

1. Introduction

Let $\mathcal{H} = \{\tau \in \mathbb{C}, \text{Im}(\tau) > 0\}$ be the upper half-plane. The Eisenstein series are defined for every even integer $k \geq 2$ and $\tau \in \mathcal{H}$ by

$$E_k(\tau) = 1 - \frac{2k}{B_k} \sum_{n=1}^{\infty} \sigma_{k-1}(n) q^n$$

$$= 1 - \frac{2k}{B_k} \sum_{n=1}^{\infty} \frac{n^{k-1} q^n}{1 - q^n}, \quad q = e^{2\pi i \tau}.$$

Here B_k is the k-th Bernoulli number and $\sigma_k(n) = \sum_{d|n} d^k$.

These series play an important role in the theory of modular forms and quasi-modular forms. They have been the topic of extensive investigation for a long time from various points of view. For instance, from the analytic point of view, the study of the zeros of $E_k(z)$, $k \geq 4$, has been carried out by several authors. In 1963, K. Wohlfahrt proved in [6] that the zeros of E_k, $4 \leq k \leq 26$, are simple and lie in the arc of the unit circle $\{z = e^{i\theta} : \pi/2 \leq \theta \leq 3\pi/2\}$ in the fundamental domain $\mathfrak{F} = \{\tau \in \mathfrak{H}, |\tau| \geq 1 \text{ and } |\text{Re}(\tau)| \leq 1/2\}$ of the modular group SL$_2$(Z). He also conjectured that this holds for all $k \geq 4$. In 1970, F.K.C. Rankin and H.P.F. Swinnerton-Dyer [5] proved Wohlfahrt’s conjecture. In 1982, R.A. Rankin [4] generalized their result to a certain class of Poincaré series. However, nothing has been proven for the Eisenstein series E_2, which is important in many fields. In fact, even whether it has a finite or an infinite number of zeros has not been known.

In this paper, we prove that there are infinitely many non-equivalent zeros of E_2 in \mathfrak{F}. In fact, since E_2 is not exactly a modular form but rather a quasi-modular form, two zeros τ_0 and τ_1 of E_2 are SL$_2$(Z)-equivalent, that is $\tau_1 = \gamma \cdot \tau_0$ for $\gamma \in \text{SL}_2(\mathbb{Z})$ if and only if $\tau_1 = \tau_0 + n$ for an integer n. Thus, we restrict our investigation to the half-strip $\mathfrak{S} = \{\tau \in \mathfrak{H}, -\frac{1}{2} < \text{Re}(\tau) \leq \frac{1}{2}\}$, in which we prove

Received by the editors April 21, 2009, and, in revised form, October 3, 2009.

2010 Mathematics Subject Classification. Primary 11F11.
that there are infinitely many zeros for E_2. Moreover, these zeros present a strange distribution in \mathfrak{H}. More precisely, the fundamental domain \mathfrak{F} and infinitely many of its conjugates within \mathfrak{H} contain no zero of E_2, while there are infinitely many conjugates of \mathfrak{F} which contain zeros of E_2.

2. Eisenstein series: Some properties

The most familiar Eisenstein series are

\begin{align}
E_2(\tau) &= 1 - 24 \sum_{n=1}^{\infty} \sigma_1(n) q^n, \\
E_4(\tau) &= 1 + 240 \sum_{n=1}^{\infty} \sigma_3(n) q^n, \\
E_6(\tau) &= 1 - 504 \sum_{n=1}^{\infty} \sigma_5(n) q^n.
\end{align}

The series E_4 and E_6 are, respectively, modular forms of weight 4 and 6. However, the Eisenstein series E_2 is not a modular form. In fact, it transforms under the action of the modular group as follows (see [3]).

Proposition 2.1. For $\alpha = \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \in \text{SL}_2(\mathbb{Z})$, we have

\begin{equation}
E_2(\alpha \cdot \tau) = (c\tau + d)^2 E_2(\tau) + \frac{6c}{\pi^4} (c\tau + d),
\end{equation}

where

\[\alpha \cdot \tau = \frac{a\tau + b}{c\tau + d}. \]

This proposition can be proved using the fact that E_2 is the logarithmic derivative of the modular discriminant $\Delta = \frac{1}{1728} (E_4^3 - E_6^2)$ of weight 12, the derivation being $\frac{1}{2\pi i} \frac{d}{d\tau}$.

These three functions were especially studied by Ramanujan [2], who proved that they satisfy the following differential equations:

\begin{align}
\frac{1}{2\pi i} \frac{dE_2}{d\tau} &= \frac{1}{12} (E_2^2 - E_4), \\
\frac{1}{2\pi i} \frac{dE_4}{d\tau} &= \frac{1}{3} (E_2 E_4 - E_6), \\
\frac{1}{2\pi i} \frac{dE_6}{d\tau} &= \frac{1}{2} (E_2 E_6 - E_4^2).
\end{align}

Thus the graded ring $\mathbb{C}[E_2, E_4, E_6]$ is closed under the differential operator $\frac{d}{d\tau}$. It is known that the space of all modular forms is exactly the graded ring $\mathbb{C}[E_4, E_6]$. We shall at this stage give some special values of E_2 at i and at the cubic root of unity $\rho = \frac{-1 + i\sqrt{3}}{2}$:

\begin{align}
E_2(i) &= \frac{3}{\pi}, \\
E_2(\rho) &= \frac{2\sqrt{3}}{\pi}.
\end{align}

This follows from the transformation formula for E_2 together with the appropriate transformations that fix i and ρ.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Zeros of the Eisenstein series E_2

In this section we prove that the series E_2 has infinitely many zeros, a fact that has not been known before. Set $S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ and $S_n = \begin{pmatrix} 1 & 0 \\ n & 1 \end{pmatrix}$ for positive integers n.

Proposition 3.1. The Eisenstein series E_2 has a zero τ_0 on the imaginary axis and a zero τ_1 on the axis $\text{Re}(z) = \frac{1}{2}$.

Proof. It is clear that for $\tau = iy$, the series $E_2(\tau)$ is real and increasing on $(0, \infty)$. Meanwhile, $\lim_{y \to 0} E_2(iy) = -\infty$ and $\lim_{y \to \infty} E_2(iy) = 1$. It follows that E_2 has a unique zero, say τ_0, on the purely imaginary axis. Similarly, $E_2(\tau)$ is real for $\tau = \frac{1}{2} + iy$, $y > 0$. Furthermore, we have

$$\lim_{y \to \infty} E_2(\frac{1}{2} + iy) = -\infty.$$

Indeed, for $\alpha = S^{-1} = \begin{pmatrix} 1 & 0 \\ -2 & 1 \end{pmatrix}$ we have

$$E_2 \left(\frac{1}{2} + iy \right) = -\frac{1}{y^2} \left(\frac{1}{4} E_2 \left(-\frac{1}{2} + \frac{i}{4y} \right) - \frac{6y}{\pi} \right).$$

This gives the desired limit since $E_2 \left(-\frac{1}{2} + \frac{i}{4y} \right)$ tends to 1 as y tends to 0. Combining this with the fact that $E_2(\rho) = E_2(\rho + 1) = \frac{2\sqrt{3}}{\pi}$ yields the existence of a zero τ_1 of real part $1/2$ and whose imaginary part is less than $\sqrt{3}/2$. Here again we used the transformation formula in Proposition 2.1 with $\alpha = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.

As for the location of these two zeros, and taking into account the special value of E_2 at i and ρ given respectively by (9) and (10), we have

Proposition 3.2. The zeros τ_0 and τ_1 are contained respectively in the fundamental domains S_F, S_2F.

It is worth mentioning that numerical values of these two zeros appear in [1], where they are studied as equilibrium points of Green’s functions.

Unlike the case of modular forms, the set of zeros of E_2 is not invariant under every conjugation by elements of $\text{SL}_2(\mathbb{Z})$. In fact we have

Proposition 3.3. Two zeros of E_2 are equivalent if and only if one is a translate of the other by an integer.

Proof. Suppose that z_1, z_2 are any two zeros of E_2 in the half-plane \mathcal{H} that are equivalent modulo $\text{SL}_2(\mathbb{Z})$. Say, $z_1 = \alpha \cdot z_2$, $\alpha = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Then, by the transformation formula for E_2 in Proposition 2.1 we have

$$E_2(z_1) = 0 = E_2(\alpha \cdot z_2) = (cz_2 + d)^2 E_2(z_2) + \frac{6c}{\pi i} (cz_2 + d)$$

which is possible only when $c = 0$, and in this case we have $a = d = \pm 1$; that is, α is a translation. The converse follows from the invariance of E_2 under translation. □
As a consequence we have

Corollary 3.4. No two distinct zeros of E_2 in the half-strip \mathcal{S} are equivalent modulo the modular group $SL_2(\mathbb{Z})$.

We now state the main results of this section.

Theorem 3.5. The Eisenstein series E_2 has infinitely many zeros in the half-strip $\mathcal{S} = \{ \tau \in \mathbb{H}, -\frac{1}{2} < Re(\tau) \leq \frac{1}{2} \}$.

Proof. Let τ_0 be the unique zero of E_2 on the imaginary axis. Let $\alpha = \left(\begin{array}{ll} t & u \\ v & w \end{array} \right) \in SL_2(\mathbb{Z})$, where $tv \neq 0$. Then, by Equation (5), we have

$$E_2(\tau_0) = 0 = E_2(\alpha^{-1} \cdot \tau_0) = (v(\alpha \cdot \tau_0) + t)^2 E_2(\alpha \cdot \tau_0) - \frac{6v}{\pi i} (v(\alpha \cdot \tau_0) + t).$$

It follows that

$$(-v(\alpha \cdot \tau_0) + t)E_2(\alpha \cdot \tau_0) = \frac{6v}{\pi i},$$

which is equivalent to saying that

$$\frac{E_2(\alpha \cdot \tau_0)}{(\alpha \cdot \tau_0) E_2(\alpha \cdot \tau_0) + \frac{6v}{\pi i}} = \frac{v}{t}.$$

This means that the map $f(z)$ defined by

$$f(z) = \frac{E_2(z)}{(z E_2(z) + \frac{6v}{\pi i})}$$

carries $\alpha \cdot \tau_0$ onto $r_0 = v/t$, and thus it maps any open neighborhood D_0 of $\alpha \cdot \tau_0$, which we choose in the interior of the fundamental domain $\alpha S\mathcal{F}$ and on which it is holomorphic, onto an open neighborhood U_0 of r_0. Let $r_1 = a_1/b_1$ be a reduced fraction in $\mathbb{Q} \cap U_0 \setminus \{r_0\}$. Then there exists $z_1 \in D_0 \setminus \{\alpha \cdot \tau_0\}$ such that $f(z_1) = a_1/b_1$. Therefore,

$$(-a_1 z_1 + b_1) E_2(z_1) = \frac{6a_1}{\pi i}. \quad (11)$$

Choose $c_1, d_1 \in \mathbb{Z}$ such that $b_1 d_1 - a_1 c_1 = 1$. Then

$$\gamma_1 := \left(\begin{array}{ll} d_1 & -c_1 \\ -a_1 & b_1 \end{array} \right) \in SL_2(\mathbb{Z}).$$

If we set $\tau_1 = \gamma_1 \cdot z_1$, then, using (6) and (11), we have $E_2(\tau_1) = 0$. Moreover, τ_1 is not equivalent to τ_0 modulo $SL_2(\mathbb{Z})$; otherwise we would have, according to Proposition 3.3, that $\tau_0 := T^n \gamma_1 \cdot z_1$ for some $n \in \mathbb{Z}$ with $T = \left(\begin{array}{ll} 1 & 1 \\ 0 & 1 \end{array} \right)$. Since $z_1 \in \alpha S\mathcal{F}$, write $z_1 = \alpha \cdot z'_1$ for some $z'_1 \in S\mathcal{F}$. We have $\tau_0 = T^n \gamma_1 \alpha \cdot z'_1$ with τ_0 and z'_1 being in the fundamental domain $S\mathcal{F}$. Therefore, $T^n \gamma_1 \alpha = 1$, and hence $\tau_0 = z'_1$ and $\alpha \cdot \tau_0 = z_1$, a contradiction since we have chosen $z_1 \in D_0 \setminus \{\alpha \cdot \tau_0\}$. Thus τ_1 is a zero of E_2 that is not equivalent to τ_0.

It remains to show that two distinct rational numbers lead to two distinct zeros of E_2. Let $r_2 = a_2/b_2$ be a rational number in $U_0 \setminus \{r_0, r_1\}$. In the same way we construct a zero of E_2, $\tau_2 = \gamma_2 \cdot z_2$, that is not equivalent to τ_0 modulo $SL_2(\mathbb{Z})$, with $z_2 \in \alpha S\mathcal{F}$. Then τ_2 is not equivalent to τ_1 modulo $SL_2(\mathbb{Z})$. Indeed if $\tau_1 = T^m \cdot \tau_2$ for some $m \in \mathbb{Z}$, then $\gamma_1 \alpha \cdot z'_1 = T^m \gamma_2 \alpha \cdot z'_2$ with z'_1 and z'_2 being in the same fundamental domain $S\mathcal{F}$. It follows that $\gamma_1 \alpha = T^m \gamma_2 \alpha$, and consequently $r_1 = r_2$.

This contradicts our choice of \(r_2 \). Hence, \(\tau_2 \) is another zero of \(E_2 \) that is not equivalent to either \(\tau_0 \) or \(\tau_1 \). Finally, since the open set \(U_0 \) contains infinitely many rational numbers, we deduce that \(E_2 \) has infinitely many zeros in the half-strip \(\mathcal{S} \). \(\square \)

Since \(E_2 \) is the logarithmic derivative of the discriminant \(\Delta \), from the above theorem we deduce

Corollary 3.6. The discriminant \(\Delta \) has infinitely many critical points.

We now look at the multiplicity of the zeros of \(E_2 \).

Theorem 3.7. The zeros of the Eisenstein series \(E_2 \) are all simple.

Proof. Let \(z_0 \) be a zero of \(E_2 \). By (12), we have

\[
\frac{1}{2\pi i} \frac{dE_2(z_0)}{d\tau} = \frac{1}{12} \left(E_2(z_0)^2 - E_4(z_0) \right) = \frac{-1}{12} E_4(z_0).
\]

Therefore, to prove that this zero is simple, it suffices to show that \(E_4(z_0) \neq 0 \).

It is known that \(E_4 \) has all its zeros at \(\rho = \frac{1+\sqrt{3}}{2} \) and its conjugates modulo \(SL_2(\mathbb{Z}) \) (see for instance [3]). Thus, it is enough to show that \(E_2(\alpha \cdot \rho) \neq 0 \) for all \(\alpha \in SL_2(\mathbb{Z}) \). Using (3) and (11), we have for \(\alpha = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z}) \):

\[
E_2(\alpha \cdot \rho) = (cp + d)^2 \frac{2\sqrt{3}}{\pi} + \frac{6c}{\pi i} (cp + d) = \frac{2\sqrt{3}}{\pi} (c^2 - cd + d^2),
\]

which does not vanish unless \(c = d = 0 \), which is not the case since \(ad - bc = 1 \). This shows that \(E_2 \) does not vanish on the orbit of \(\rho \) and that consequently \(E_4 \) and \(E_2 \) have no common zeros. \(\square \)

4. DISTRIBUTION OF THE ZEROS OF \(E_2 \)

In this section, we will show that there are infinitely many fundamental regions within the half-strip \(\mathcal{S} \) that contain zeros of \(E_2 \), and we will also show that there are infinitely many such regions that do not contain any zero of \(E_2 \).

Theorem 4.1. There is a positive integer \(c_0 \) such that for all integers \(c \geq c_0 \), there is a fundamental domain with a vertex at \(1/c \) containing a zero of \(E_2 \).

Proof. Let \(\tau_0 \) again denote the unique zero of \(E_2 \) on the imaginary axis, and let \(\alpha = \left(\begin{array}{cc} 1 & w \\ 0 & 1 \end{array} \right) \in SL_2(\mathbb{Z}) \), so that \(tv \neq 0 \). As in the proof of Theorem 3.3, the map

\[
f(z) = \frac{E_2(z)}{(zE_2(z) + \frac{6}{\pi})}
\]

maps any neighborhood of \(\alpha \cdot \tau_0 \) onto a neighborhood of \(v/t \). In particular, \(f \) maps a neighborhood \(D_0 \) of \(S_1 \tau_0 \), chosen to be in the interior of \(S_1 \mathcal{S} \), onto a neighborhood \(U_0 \) of 1 (recall that \(S_1 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \)). There exists a positive integer \(c_0 \) such that for all \(c \geq c_0 \), \(1 + 1/c \in U_0 \). For each \(c \geq c_0 \), let \(z_c \in D_0 \) be such that \(f(z_c) = 1 + 1/c \).

Therefore, if \(\gamma_c = \begin{pmatrix} -1 & -1 \\ c & 1 \end{pmatrix} \), then, as in the proof of Theorem 3.3, \(\gamma_c^{-1} \cdot z_c \) is a zero \(E_2 \) belonging to \(\gamma_c^{-1} S_1 \mathcal{S} \). If we set \(S_c = \gamma_c^{-1} S_1 S = \begin{pmatrix} 1 & c \\ 0 & 1 \end{pmatrix} \) for \(c \geq c_0 \), then we have constructed a zero of \(E_2 \) in the fundamental domain \(S_c \mathcal{S} \) which has a vertex at the cusp \(1/c \). \(\square \)
Remark 4.1.

- Thanks to Proposition 3.3, the above theorem can be extended to include the cusps 0 and 1/2.
- An immediate consequence of this theorem is again the infiniteness of the number of zeros of the Eisenstein series E_2. Furthermore, it follows from Corollary 3.4 that all these zeros are inequivalent modulo $SL_2(\mathbb{Z})$, as all these fundamental domains are contained in the half-strip S.

We now focus on the fundamental domains that contain no zeros of E_2.

Proposition 4.2. The Eisenstein series E_2 has no zeros in the fundamental domain \mathfrak{F} of $SL_2(\mathbb{Z})$.

Proof. Let $\tau_0 = iy_0$ be the unique zero of E_2 on the imaginary axis. Using the transformation formula for E_2, we have

$$0 < E_2(-1/\tau_0) = \frac{6}{\pi} y_0 < 1.$$

This follows from the fact that $\text{Im}(\tau_0) < 1$ (since $\tau_0 \in S \mathfrak{F}$) and thus $\text{Im}(-1/\tau_0) > \text{Im}(\tau_0)$, and the fact that E_2 is strictly increasing on the imaginary axis with the value 0 at τ_0 and the value 1 at $i\infty$. Therefore

$$y_0 < \frac{\pi}{6}.$$

If $\tau = x + iy \in \mathfrak{F}$ is a zero of E_2, then $\text{Im}(\tau) > \sqrt{3}/2 > \pi/6 > y_0$ and therefore

$$\frac{1}{24} |1 - E_2(\tau)| = \sum_{n=1}^{\infty} \sigma_1(n)e^{2\pi in\tau} \leq \sum_{n=1}^{\infty} \sigma_1(n)e^{-2\pi ny} < \sum_{n=1}^{\infty} \sigma_1(n)e^{-2\pi ny_0}.$$

The latter sum is simply $1/24(1 - E_2(\tau_0)) = 1/24$. Therefore

$$\frac{1}{24} |1 - E_2(\tau)| < \frac{1}{24}.$$

Hence $E_2(\tau)$ cannot be 0 if $\tau \in \mathfrak{F}$. \quad \square

In the above proof we have used the inequality $\sqrt{3}/2 > \pi/6$, which is obvious numerically but is a consequence of a simpler inequality such as $\pi < 4$. In what follows we will rely on another inequality which is also numerically obvious:

$$e^{-\pi\sqrt{3}} < \frac{1}{200}.$$

It simply says that 0.00433 < 0.005.

We will now investigate more fundamental domains that do not contain any zeros of E_2. For a fixed integer $c \geq 2$ we again set $S_c = \begin{pmatrix} 1 & 0 \\ c & 1 \end{pmatrix}$ and $S_{b,d}(c) = \begin{pmatrix} 1 & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z})$, $b, d \in \mathbb{Z}$, and $\delta_b = \begin{pmatrix} 0 & -1 \\ 1 & b \end{pmatrix} \in SL_2(\mathbb{Z})$, $b \in \mathbb{Z}$. The fundamental domain $S_{b,d}(c) \mathfrak{F}$ has a vertex at the cusp $1/c$, as does $S_c \mathfrak{F}$. Also $\delta_b \mathfrak{F}$ has a vertex at the cusp 0, as does $S_b \mathfrak{F}$.

Let us examine more closely the fundamental domain $S_c \mathfrak{F}$. Its vertices are

$$\frac{1}{c}, \quad S_c \cdot \rho = c - \frac{1}{2} + i\frac{\sqrt{3}}{2}, \quad S_c \cdot (\rho + 1) = c + \frac{1}{2} + i\frac{\sqrt{3}}{2}.$$

It is clear that $\text{Im}(S_c \cdot \rho) > \text{Im} S_c \cdot (\rho + 1)$ and $\text{Re} S_c \cdot \rho > 1/c > \text{Re} S_c \cdot (\rho + 1)$. Thus
we have the following situation for the fundamental region S_c (see Figure 1).

The edge joining $1/c$ and $S_c \cdot \rho$ is an arc of the circle $C_1(c)$ centered at $c_1(c) = (c - 1)/c(c - 2)$ and having radius $r_1(c) = 1/c(c - 2)$, while the edge joining $1/c$ and $S_c \cdot (\rho + 1)$ is an arc of the circle $C_2(c)$ centered at $c_2(c) = (c + 1)/c(c + 2)$ with radius $r_2(c) = 1/c(c + 2)$. In particular, any other fundamental domain having the cusp $1/c$ as a vertex is either within the circle $C_1(c)$ or within the circle $C_2(c)$.

The case $c = 2$ needs to be clarified, as the radius $r_1(2)$ is infinite and in this case the arc joining $1/2$ and $S_2 \cdot \rho$ is the vertical segment $[1/2, 1/2 + i\sqrt{3}/6]$ (see Figure 2). Moreover, as we are restricting the study to the half-strip \mathfrak{S}, we only consider those fundamental domains with vertex at the cusp $1/2$ that lie under the arc of the circle $C_2(2)$. It has center at $c_2(2) = 3/10$ and radius $r_2(2) = 1/10$.

Lemma 4.3. If we set

$$M = \frac{1}{24} \left(1 - E_2 \left(\frac{i\sqrt{3}}{2}\right)\right),$$

then we have

$$24^2 \left(M^2 + \frac{M}{\pi}\right) < 1. \quad (14)$$

Proof. Set $q = \exp(-\pi\sqrt{3})$. We have

$$0 < M = \sum_{n \geq 1} \sigma_1(n) q^n = \sum_{n \geq 1} \frac{nq^n}{1 - q^n} \leq \frac{1}{1 - q} \sum_{n \geq 1} nq^n = \frac{q}{(1 - q)^2}.$$

Hence, using \cite{13}, we have

$$M \leq \frac{40000}{7880599}.$$

Therefore,

$$24^2 \left(M^2 + \frac{M}{\pi}\right) < 24^2 \left(M^2 + \frac{M}{3}\right) \leq \frac{61444600320000}{62103840598801} < 1.$$

□
In the following, we will prove that the only fundamental domains having a vertex at the cusp $1/c$ that might contain a zero of E_2 are the $\beta_c \mathcal{F}$, and the only fundamental domain having a vertex at the cusp 0 that might contain a zero is $S \mathcal{F}$.

Theorem 4.4. If $b \neq 0$, then E_2 has no zeros in $S_{b,d}(c) \mathcal{F}$ or in $\delta_b \mathcal{F}$.

Proof. Suppose first that $c \geq 3$, and suppose there is a zero z_0 of E_2 in the fundamental domain $S_{b,d}(c) \mathcal{F}$ where $S_{b,d}(c) = \begin{pmatrix} 1 & b \\ c & d \end{pmatrix} \in \text{SL}_2(\mathbb{Z})$. If $b \neq 0$, then, according to the discussion preceding the above lemma, the fundamental domain $S_{b,d}(c) \mathcal{F}$ is either within the circle $C_1(c)$ or $C_2(c)$. We will show that in fact z_0 is outside the circles $C_1(c)$ and $C_2(c)$, which is a contradiction.

We have

$$E_2(S_{b,d}(c)^{-1} \cdot z_0) = \frac{-6c}{\pi i} (-cz_0 + 1),$$

so that

$$\sum_{n=1}^{\infty} \sigma_1(n)e^{2\pi inS_{b,d}(c)^{-1} \cdot z_0} = \frac{1}{24} + \frac{c}{4\pi i} (-cz_0 + 1) = -\frac{c^2}{4\pi i} \left(z_0 - \left(\frac{1}{c} + \frac{\pi i}{6c^2} \right) \right).$$

(15)
Since \(S_{b,d}(c)^{-1} \cdot z_0 \in \mathfrak{F} \), we have
\[
\text{Im} \left(S_{b,d}(c)^{-1} \cdot z_0 \right) \geq \frac{\sqrt{3}}{2}
\]
Hence
\[
\left| \sum_{n=1}^{\infty} \sigma_1(n)e^{2\pi niS_{b,d}^{-1}z_0} \right| \leq \sum_{n=1}^{\infty} \sigma_1(n)e^{-n\pi\sqrt{3}} = M.
\]
Therefore
\[
\left| z_0 - \left(\frac{1}{c} + \frac{\pi i}{6c^2} \right) \right| \leq M \frac{4\pi}{c^2};
\]
that is, \(z_0 \) belongs to the disk \(D_0(c) \) of center \(c_0(c) = \frac{1}{c} + \frac{\pi i}{6c^2} \) and radius \(r_0(c) = \frac{M\pi}{288} \). We will now show that the disk \(D_0(c) \) lies outside the circles \(C_1(c) \) and \(C_2(c) \) by showing respectively that \(|c_0(c) - c_1(c)| > r_1(c) + r_0(c) \) and that \(|c_0(c) - c_2(c)| > r_2(c) + r_0(c) \). Because the cusp \(1/c \) and \(c_0(c) \) are on the same vertical axis, we have
\[
|c_1(c) - c_0(c)|^2 = r_1(c)^2 + \left(\frac{\pi}{6c^2} \right)^2.
\]
Thus in order to prove that \(|c_0(c) - c_1(c)| > r_0(c) + r_1(c) \) we only need to prove that
\[
\frac{r_0(c)^2 + 2r_0(c)r_1(c)}{\left(\frac{\pi}{6c^2} \right)^2} < \frac{4\pi}{c^2}.
\]
In other words,
\[
2\pi M^2 + \frac{M c}{c - 2} < \frac{\pi}{288}.
\]
In the meantime, for \(c \geq 4 \), we have \(c/(c - 2) = 1 + 2/(c - 2) \leq 2 \). Thus it is enough to prove that \(2\pi M^2 + 2M < \pi/288 \), which is a consequence of Lemma 4.3.

Similarly, we prove that \(|c_2 - c_0| > r_2 + r_0 \). Indeed, as above, it is enough to show that
\[
2\pi M^2 + \frac{M c}{c + 2} < \frac{\pi}{288},
\]
which is a consequence of Lemma 4.3 since \(c/(c + 2) < 1 \). Notice that \(|c_2 - c_0| > r_2 + r_0 \) is also valid for the cases \(c = 2 \) and \(c = 3 \). This proves the theorem for \(c \geq 4 \) and also for \(c = 2 \) since the circle \(C_1(c) \) is the vertical line \(\text{Re} \; z = 1/2 \), and thus we only need to estimate the distance \(|c_2 - c_0| \).

The case \(c = 3 \) involves different estimates since we cannot apply Lemma 4.3 for the above choice of \(M \). As we noticed above \(z_0 \) is outside the circle \(C_2(3) \), and we only need to show that it is outside \(C_1(3) \). On the other hand, the fundamental domain \(S_{-1,-2}(3)\mathfrak{F} \) is adjacent (on the right) to \(S_3\mathfrak{F} \) (see Figure 3), and the disc \(D_0(3) \) is outside the circle \(C_3 \) which joins the vertices \(1/3 \) and \(S_{-1,-2}(3)\cdot\rho \). Indeed, this circle is centered at \(8/21 \) and has radius \(1/21 \). Moreover
\[
|c_0(3) - 8/21| = \frac{\sqrt{324 + 49\pi^2}}{378} \approx 0.07518,
\]
and
\[
r_0(3) + \frac{1}{21} = \frac{4\pi M}{9} + \frac{1}{21} < \frac{4\pi}{9 \cdot 200} + \frac{1}{21} \approx 0.0546.
\]
It follows that the only possible values of \((b, d)\) for which \(S_{b,d}\mathfrak{F} \) might contain a zero are \((b, d) = (-1, -2)\) leading to \(S_{-1,-2}(3)\mathfrak{F} \) and \((b, d) = (0, 1)\) leading to \(S(3)\mathfrak{F} \). We now show that \(z_0 \notin S_{-1,-2}(3)\mathfrak{F} \) by exhibiting a smaller disc \(D(3) \) containing \(z_0 \).
and lying outside the circle \(C_1(3) \) as the disc \(D_0(3) \) does not necessarily meet this condition. The transformation \(S_{-1,-2} \) maps \(D_0(3) \) onto a disc \(D'_0(3) \) centered at

\[
c_0'(3) = S_{-1,-2}(3)^{-1} \cdot c_0(3) = \frac{6i}{\pi} + \frac{2}{3}
\]

and with radius \(r'_0(3) \) that can easily be shown to satisfy \(r'_0(3) < 0.26 \). Therefore, we obtain a more precise lower bound to \(\text{Im} \ S_{-1,-2}(3) \cdot z_0 \) as compared to (16):

\[
\text{Im} \ S_{-1,-2}(3) \cdot z_0 > \frac{6}{\pi} - 0.26.
\]

We now replace \(M \) in Lemma 4.3 by

\[
M' = \frac{1}{24} (1 - E_2 (i(6/\pi - 0.26)))
\]

and obtain

\[
2\pi M'^2 + 3M' < \pi/288.
\]

Hence, as in the general case, we conclude that

\[
\left| z_0 - \left(\frac{1}{3} + \frac{i\pi}{54} \right) \right| \leq M' \frac{4\pi}{9},
\]

and therefore, the disc \(D(3) = D(1/3 + i\pi/54, 4\pi M'/9) \) is outside the circle \(C_1(3) \). It follows that there is no zero of \(E_2 \) in \(S_{-1,-2}(3) \) and thus in any \(S_{b,a}(3) \) for \(b \neq 0 \).
Finally, for the case of the cusp at 0, if \(z_0 \) is a zero of \(E_2 \) in \(\delta_b \mathfrak{F} \), then \(z_0 \) is contained inside the circle centered at \(\frac{e^{2 \pi i}}{b} \) and having radius \(4M\pi \) which is clearly contained in \(S \mathfrak{F} \). Therefore \(b = 0 \), since, otherwise, \(\delta_b \mathfrak{F} \) and \(S \mathfrak{F} \) are disjoint. □

References

