Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A Barban-Davenport-Halberstam asymptotic for number fields


Author: Ethan Smith
Journal: Proc. Amer. Math. Soc. 138 (2010), 2301-2309
MSC (2010): Primary 11N36, 11R44
DOI: https://doi.org/10.1090/S0002-9939-10-10303-7
Published electronically: March 3, 2010
MathSciNet review: 2607859
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ K$ be a fixed number field, and assume that $ K$ is Galois over $ \mathbb{Q}$. Previously, the author showed that when estimating the number of prime ideals with norm congruent to $ a$ modulo $ q$ via the Chebotarëv Density Theorem, the mean square error in the approximation is small when averaging over all $ q\le Q$ and all appropriate $ a$. In this article, we replace the upper bound by an asymptotic formula. The result is related to the classical Barban-Davenport-Halberstam Theorem in the case $ K=\mathbb{Q}$.


References [Enhancements On Off] (What's this?)

  • 1. M.B. Barban.
    On the distribution of primes in arithmetic progressions ``on average''.
    Dokl. Akad. Nauk SSSR, 5:5-7, 1964
    (Russian).
  • 2. H. Davenport and H. Halberstam.
    Primes in arithmetic progressions.
    Michigan Math. J., 13:485-489, 1966. MR 0200257 (34:156)
  • 3. H. Davenport and H. Halberstam.
    Corrigendum: ``Primes in arithmetic progression''.
    Michigan Math. J., 15:505, 1968. MR 0233778 (38:2099)
  • 4. Harold Davenport.
    Multiplicative Number Theory.
    Springer-Verlag, New York, 1980. MR 606931 (82m:10001)
  • 5. Larry Joel Goldstein.
    A generalization of the Siegel-Walfisz theorem.
    Trans. Amer. Math. Soc., 149:417-429, 1970. MR 0274416 (43:181)
  • 6. Jürgen G. Hinz.
    On the theorem of Barban and Davenport-Halberstam in algebraic number fields.
    J. Number Theory, 13(4):463-484, 1981. MR 642922 (83g:10032)
  • 7. Christopher Hooley.
    On the Barban-Davenport-Halberstam theorem. I.
    J. Reine Angew. Math., 274/275:206-223, 1975.
    Collection of articles dedicated to Helmut Hasse on his seventy-fifth birthday, III. MR 0382202 (52:3090a)
  • 8. Serge Lang.
    Algebraic number theory, volume 110 of Graduate Texts in Mathematics.
    Springer-Verlag, New York, second edition, 1994. MR 1282723 (95f:11085)
  • 9. A. F. Lavrik.
    On the twin prime hypothesis of the theory of primes by the method of I. M. Vinogradov.
    Soviet Math. Dokl., 1:700-702, 1960. MR 0157955 (28:1183)
  • 10. H. L. Montgomery.
    Primes in arithmetic progressions.
    Michigan Math. J., 17:33-39, 1970. MR 0257005 (41:1660)
  • 11. M. Ram Murty.
    Problems in analytic number theory, volume 206 of Graduate Texts in Mathematics.
    Readings in Mathematics.
    Springer-Verlag, New York, 2001. MR 1803093 (2001k:11002)
  • 12. Ethan Smith.
    A generalization of the Barban-Davenport-Halberstam Theorem to number fields.
    J. Number Theory, 129(11):2735-2742, 2009. MR 2549528
  • 13. Robin J. Wilson.
    The large sieve in algebraic number fields.
    Mathematika, 16:189-204, 1969. MR 0263774 (41:8374)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 11N36, 11R44

Retrieve articles in all journals with MSC (2010): 11N36, 11R44


Additional Information

Ethan Smith
Affiliation: Department of Mathematical Sciences, Michigan Technological University, 1400 Townsend Drive, Houghton, Michigan 49931-1295
Email: ethans@mtu.edu

DOI: https://doi.org/10.1090/S0002-9939-10-10303-7
Keywords: Generalized Siegel-Walfisz theorem, Barban-Davenport-Halberstam Theorem
Received by editor(s): July 28, 2009
Received by editor(s) in revised form: October 15, 2009, and October 30, 2009
Published electronically: March 3, 2010
Communicated by: Ken Ono
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society