A BarbanDavenportHalberstam asymptotic for number fields
Author:
Ethan Smith
Journal:
Proc. Amer. Math. Soc. 138 (2010), 23012309
MSC (2010):
Primary 11N36, 11R44
Published electronically:
March 3, 2010
MathSciNet review:
2607859
Fulltext PDF
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Let be a fixed number field, and assume that is Galois over . Previously, the author showed that when estimating the number of prime ideals with norm congruent to modulo via the Chebotarëv Density Theorem, the mean square error in the approximation is small when averaging over all and all appropriate . In this article, we replace the upper bound by an asymptotic formula. The result is related to the classical BarbanDavenportHalberstam Theorem in the case .
 1.
M.B. Barban.
On the distribution of primes in arithmetic progressions ``on average''. Dokl. Akad. Nauk SSSR, 5:57, 1964 (Russian).
 2.
H.
Davenport and H.
Halberstam, Primes in arithmetic progressions, Michigan Math.
J. 13 (1966), 485–489. MR 0200257
(34 #156)
 3.
H.
Davenport and H.
Halberstam, Corrigendum: “Primes in arithmetic
progression”, Michigan Math. J. 15 (1968), 505.
MR
0233778 (38 #2099)
 4.
Harold
Davenport, Multiplicative number theory, 2nd ed., Graduate
Texts in Mathematics, vol. 74, SpringerVerlag, New YorkBerlin, 1980.
Revised by Hugh L. Montgomery. MR 606931
(82m:10001)
 5.
Larry
Joel Goldstein, A generalization of the SiegelWalfisz
theorem, Trans. Amer. Math. Soc. 149 (1970), 417–429. MR 0274416
(43 #181), 10.1090/S00029947197002744166
 6.
Jürgen
G. Hinz, On the theorem of Barban and DavenportHalberstam in
algebraic number fields, J. Number Theory 13 (1981),
no. 4, 463–484. MR 642922
(83g:10032), 10.1016/0022314X(81)90038X
 7.
Christopher
Hooley, On the BarbanDavenportHalberstam theorem. I, J.
Reine Angew. Math. 274/275 (1975), 206–223.
Collection of articles dedicated to Helmut Hasse on his seventyfifth
birthday, III. MR 0382202
(52 #3090a)
 8.
Serge
Lang, Algebraic number theory, 2nd ed., Graduate Texts in
Mathematics, vol. 110, SpringerVerlag, New York, 1994. MR 1282723
(95f:11085)
 9.
A.
F. Lavrik, On the twin prime hypothesis of the theory of primes by
the method of I. M. Vinogradov, Soviet Math. Dokl. 1
(1960), 700–702. MR 0157955
(28 #1183)
 10.
H.
L. Montgomery, Primes in arithmetic progressions, Michigan
Math. J. 17 (1970), 33–39. MR 0257005
(41 #1660)
 11.
M.
Ram Murty, Problems in analytic number theory, Graduate Texts
in Mathematics, vol. 206, SpringerVerlag, New York, 2001. Readings in
Mathematics. MR
1803093 (2001k:11002)
 12.
Ethan
Smith, A generalization of the BarbanDavenportHalberstam theorem
to number fields, J. Number Theory 129 (2009),
no. 11, 2735–2742. MR 2549528
(2010h:11187), 10.1016/j.jnt.2009.05.005
 13.
Robin
J. Wilson, The large sieve in algebraic number fields,
Mathematika 16 (1969), 189–204. MR 0263774
(41 #8374)
 1.
 M.B. Barban.
On the distribution of primes in arithmetic progressions ``on average''. Dokl. Akad. Nauk SSSR, 5:57, 1964 (Russian).
 2.
 H. Davenport and H. Halberstam.
Primes in arithmetic progressions. Michigan Math. J., 13:485489, 1966. MR 0200257 (34:156)
 3.
 H. Davenport and H. Halberstam.
Corrigendum: ``Primes in arithmetic progression''. Michigan Math. J., 15:505, 1968. MR 0233778 (38:2099)
 4.
 Harold Davenport.
Multiplicative Number Theory. SpringerVerlag, New York, 1980. MR 606931 (82m:10001)
 5.
 Larry Joel Goldstein.
A generalization of the SiegelWalfisz theorem. Trans. Amer. Math. Soc., 149:417429, 1970. MR 0274416 (43:181)
 6.
 Jürgen G. Hinz.
On the theorem of Barban and DavenportHalberstam in algebraic number fields. J. Number Theory, 13(4):463484, 1981. MR 642922 (83g:10032)
 7.
 Christopher Hooley.
On the BarbanDavenportHalberstam theorem. I. J. Reine Angew. Math., 274/275:206223, 1975. Collection of articles dedicated to Helmut Hasse on his seventyfifth birthday, III. MR 0382202 (52:3090a)
 8.
 Serge Lang.
Algebraic number theory, volume 110 of Graduate Texts in Mathematics. SpringerVerlag, New York, second edition, 1994. MR 1282723 (95f:11085)
 9.
 A. F. Lavrik.
On the twin prime hypothesis of the theory of primes by the method of I. M. Vinogradov. Soviet Math. Dokl., 1:700702, 1960. MR 0157955 (28:1183)
 10.
 H. L. Montgomery.
Primes in arithmetic progressions. Michigan Math. J., 17:3339, 1970. MR 0257005 (41:1660)
 11.
 M. Ram Murty.
Problems in analytic number theory, volume 206 of Graduate Texts in Mathematics. Readings in Mathematics. SpringerVerlag, New York, 2001. MR 1803093 (2001k:11002)
 12.
 Ethan Smith.
A generalization of the BarbanDavenportHalberstam Theorem to number fields. J. Number Theory, 129(11):27352742, 2009. MR 2549528
 13.
 Robin J. Wilson.
The large sieve in algebraic number fields. Mathematika, 16:189204, 1969. MR 0263774 (41:8374)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (2010):
11N36,
11R44
Retrieve articles in all journals
with MSC (2010):
11N36,
11R44
Additional Information
Ethan Smith
Affiliation:
Department of Mathematical Sciences, Michigan Technological University, 1400 Townsend Drive, Houghton, Michigan 499311295
Email:
ethans@mtu.edu
DOI:
http://dx.doi.org/10.1090/S0002993910103037
Keywords:
Generalized SiegelWalfisz theorem,
BarbanDavenportHalberstam Theorem
Received by editor(s):
July 28, 2009
Received by editor(s) in revised form:
October 15, 2009, and October 30, 2009
Published electronically:
March 3, 2010
Communicated by:
Ken Ono
Article copyright:
© Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.
