Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Uniqueness for a stochastic inviscid dyadic model


Authors: D. Barbato, F. Flandoli and F. Morandin
Journal: Proc. Amer. Math. Soc. 138 (2010), 2607-2617
MSC (2010): Primary 60H15; Secondary 35Q31, 35R60, 76B03, 76M35
DOI: https://doi.org/10.1090/S0002-9939-10-10318-9
Published electronically: February 24, 2010
MathSciNet review: 2607891
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For the deterministic dyadic model of turbulence, there are examples of initial conditions in $ l^{2}$ which have more than one solution. The aim of this paper is to prove that uniqueness, for all $ l^{2}$-initial conditions, is restored when a suitable multiplicative noise is introduced. The noise is formally energy preserving. Uniqueness is understood in the weak probabilistic sense.


References [Enhancements On Off] (What's this?)

  • 1. H. Airault, P. Malliavin, Quasi-invariance of Brownian measures on the group of circle homeomorphisms and infinite-dimensional Riemannian geometry, J. Funct. Anal. 241 (1) (2006) 99-142. MR 2264248 (2008b:60119)
  • 2. S. Attanasio, F. Flandoli, Zero-noise solutions of linear transport equations without uniqueness: an example, C. R. Acad. Sci. Paris, Ser. I 347 (2009) 753-756. MR 2543977
  • 3. D. Barbato, F. Flandoli, F. Morandin, Energy dissipation and self-similar solutions for an unforced inviscid dyadic model, Trans. Amer. Math. Soc., to appear, arXiv:0811.1689v1.
  • 4. Z. Brzezniak, S. Peszat, Stochastic two dimensional Euler equations, Ann. Probab. 29 (2001), no. 4, 1796-1832. MR 1880243 (2002m:60091)
  • 5. A. Cheskidov, Blow-up in finite time for the dyadic model of the Navier-Stokes equations, Trans. Amer. Math. Soc. 360 (2008), no. 10, 5101-5120. MR 2415066 (2010a:35180)
  • 6. A. Cheskidov, S. Friedlander, N. Pavlovic, Inviscid dyadic model of turbulence: The fixed point and Onsager's conjecture, J. Math. Phys. 48 (2007), no. 6, 065503, 16 pp. MR 2337019 (2008k:76012)
  • 7. A. Cheskidov, S. Friedlander, N. Pavlovic, An inviscid dyadic model of turbulence: the global attractor, arXiv:math.AP/0610815
  • 8. A.-B. Cruzeiro, F. Flandoli, P. Malliavin, Brownian motion on volume preserving diffeomorphisms group and existence of global solutions of 2D stochastic Euler equation, J. Funct. Anal. 242 (2007), no. 1, 304-326. MR 2274026 (2007j:60131)
  • 9. G. Da Prato, A. Debussche, Ergodicity for the 3D stochastic Navier-Stokes equations, J. Math. Pures Appl. (9) 82 (2003), no. 8, 877-947. MR 2005200 (2004m:60133)
  • 10. G. Da Prato, J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge Univ. Press, Cambridge, 1992. MR 1207136 (95g:60073)
  • 11. F. Flandoli, An introduction to $ 3$D stochastic fluid dynamics. SPDE in hydrodynamic: recent progress and prospects, 51-150, Lecture Notes in Math., 1942, Springer, Berlin, 2008. MR 2459085 (2009j:76191)
  • 12. F. Flandoli, M. Gubinelli and E. Priola, Well-posedness of the transport equation by stochastic perturbation, Invent. Math., to appear, arXiv:0809.1310v2, DOI: 10.1007/S00222-009-0224-4.
  • 13. F. Flandoli, M. Romito, Markov selections for the 3D stochastic Navier-Stokes equations, Probab. Theory Related Fields 140 (2008), no. 3-4, 407-458. MR 2365480 (2009b:76033)
  • 14. S. Friedlander, N. Pavlovic, Blowup in a three-dimensional vector model for the Euler equations, Comm. Pure Appl. Math. 57 (2004), no. 6, 705-725. MR 2038114 (2005c:35241)
  • 15. I. Gyöngy, Existence and uniqueness results for semilinear stochastic partial differential equations, Stochastic Process. Appl. 73 (1998), no. 2, 271-299. MR 1608641 (99b:60091)
  • 16. I. Gyöngy, É. Pardoux, On the regularization effect of space-time white noise on quasi-linear parabolic partial differential equations, Probab. Theory Related Fields 97 (1993), no. 1-2, 211-229. MR 1240724 (94j:60123)
  • 17. N. H. Katz, N. Pavlovic, Finite time blow-up for a dyadic model of the Euler equations, Trans. Amer. Math. Soc. 357 (2005), no. 2, 695-708. MR 2095627 (2005h:35284)
  • 18. A. Kiselev, A. Zlatoš, On discrete models of the Euler equation, IMRN 38 (2005), no. 38, 2315-2339. MR 2180809 (2007e:35229)
  • 19. S. M. Kozlov, Some questions on stochastic equations with partial derivatives, Trudy Sem. Petrovsk. 4 (1978), 147-172. MR 524530 (80h:60083)
  • 20. N. V. Krylov, B. L. Rozovskiĭ, Stochastic evolution equations (Russian), Current problems in mathematics, Vol. 14, pp. 71-147, 256, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Informatsii, Moscow, 1979. MR 570795 (81m:60116)
  • 21. H. Kunita, Stochastic differential equations and stochastic flows of diffeomorphisms, École d'été de probabilités de Saint-Flour, XII--1982, 143-303, Lecture Notes in Math., 1097, Springer, Berlin, 1984. MR 876080 (87m:60127)
  • 22. R. Mikulevicius, B. L. Rozovskiĭ, Global $ L^2$-solutions of stochastic Navier-Stokes equations, The Annals of Probab. 33 (2005), no. 1, 137-176. MR 2118862 (2005k:60198)
  • 23. E. Pardoux, Equations aux Dérivées Partielles Stochastiques non Linéaires Monotones. Étude de Solutions Fortes de Type Itô, Ph.D. Thesis, Université Paris Sud, 1975.
  • 24. C. Prévôt, M. Röckner, A concise course on stochastic partial differential equations, Lecture Notes in Mathematics, 1905, Springer, Berlin, 2007. MR 2329435 (2009a:60069)
  • 25. D. Revuz, M. Yor, Continuous Martingales and Brownian Motion, Springer-Verlag, Berlin, 1994. MR 1303781 (95h:60072)
  • 26. F. Waleffe, On some dyadic models of the Euler equations, Proc. Amer. Math. Soc. 134 (2006), 2913-2922. MR 2231615 (2007g:35222)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 60H15, 35Q31, 35R60, 76B03, 76M35

Retrieve articles in all journals with MSC (2010): 60H15, 35Q31, 35R60, 76B03, 76M35


Additional Information

D. Barbato
Affiliation: Dipartimento di Matematica Pura e Applicata, Università di Padova, via Trieste, 63, 35121 Padova, Italy
Email: barbato@math.unipd.it

F. Flandoli
Affiliation: Dipartimento di Matematica Applicata, Università di Pisa, via Buonarroti, 1, 56127 Pisa, Italy
Email: flandoli@dma.unipi.it

F. Morandin
Affiliation: Dipartimento di Matematica, Università di Parma, viale G.P. Usberti, 53A, 43124 Parma, Italy
Email: francesco.morandin@unipr.it

DOI: https://doi.org/10.1090/S0002-9939-10-10318-9
Received by editor(s): October 21, 2009
Published electronically: February 24, 2010
Additional Notes: This work was supported in part by the University of Padova under grant CPDA082105/08.
Communicated by: Edward C. Waymire
Article copyright: © Copyright 2010 American Mathematical Society

American Mathematical Society