Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the exact degree of $ \mathbb{Q}(\sqrt{a_1}, \sqrt{a_2},\ldots, \sqrt{a_\ell})$ over $ \mathbb{Q}$


Authors: R. Balasubramanian, F. Luca and R. Thangadurai
Journal: Proc. Amer. Math. Soc. 138 (2010), 2283-2288
MSC (2010): Primary 11A15
DOI: https://doi.org/10.1090/S0002-9939-10-10331-1
Published electronically: March 15, 2010
MathSciNet review: 2607857
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ S =\{a_1, a_2, \ldots, a_\ell\}$ be a finite set of non-zero integers. In this paper, we give an exact formula for the degree of the multi-quadratic field $ \mathbb{Q}(\sqrt{a_1}, \sqrt{a_2},\ldots, \sqrt{a_\ell})$ over $ \mathbb{Q}$. To do this, we compute the relative density of the set of prime numbers $ p$ for which all the $ a_i$'s are simultaneously quadratic residues modulo $ p$ in two ways.


References [Enhancements On Off] (What's this?)

  • 1. M. Fried, Arithmetical properties of value sets of polynomials, Acta Arith., 15 (1968/69), 91-115. MR 0244150 (39:5467)
  • 2. C. S. Abel-Hollinger and H. G. Zimmer, Torsion groups of elliptic curves with integral $ j$-invariant over multiquadratic fields, Number-theoretic and algebraic methods in computer science (Moscow, 1993), 69-87, World Sci. Publ., River Edge, NJ, 1995. MR 1377742 (97e:11060)
  • 3. M. Laska and M. Lorenz, Rational points on elliptic curves over $ \mathbb{Q}$ in elementary abelian $ 2$-extensions of $ \mathbb{Q}$, J. Reine Angew. Math., 355 (1985), 163-172. MR 772489 (86d:11048)
  • 4. K. R. Matthews, A generalisation of Artin's conjecture for primitive roots, Acta Arith., 29 (1976), 113-146. MR 0396448 (53:313)
  • 5. S. Wright, Patterns of quadratic residues and nonresidues for infinitely many primes, J. Number Theory, 123 (2007), 120-132. MR 2295434 (2007j:11007)
  • 6. S. Wright, A combinatorial problem related to quadratic non-residue modulo $ p$, Ars Combinatorica, to appear.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 11A15

Retrieve articles in all journals with MSC (2010): 11A15


Additional Information

R. Balasubramanian
Affiliation: Institute of Mathematical Sciences, C. I. T. Campus, Taramani, Chennai 600113, India
Email: balu@imsc.res.in

F. Luca
Affiliation: Mathematical Institute, Universidad Nacional Autónoma de México, Ap. Postal, 61-3 (Xangari), CP 58089, Morelia, Michoacán, Mexico
Email: fluca@matmor.unam.mx

R. Thangadurai
Affiliation: Department of Mathematics, Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211019, India
Email: thanga@hri.res.in

DOI: https://doi.org/10.1090/S0002-9939-10-10331-1
Keywords: Quadratic residues, Galois field, Chebotarev density theorem
Received by editor(s): September 15, 2009
Published electronically: March 15, 2010
Communicated by: Ken Ono
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society