ANOTHER PROOF FOR THE REMOVABLE SINGULARITIES OF THE HEAT EQUATION

KIN MING HUI

(Communicated by Yingfei Yi)

Abstract. We give two different simple proofs for the removable singularities of the heat equation in $(\Omega \setminus \{x_0\}) \times (0, T)$, where $x_0 \in \Omega \subset \mathbb{R}^n$ is a bounded domain with $n \geq 3$. We also give a necessary and sufficient condition for removable singularities of the heat equation in $(\Omega \setminus \{x_0\}) \times (0, T)$ for the case $n = 2$.

It is interesting to find a necessary and sufficient condition for the solutions of the equations to have removable singularities. In $[8]$ S.Y. Hsu proved the following theorem.

Theorem 1. Let $n \geq 3$ and let $0 \in \Omega \subset \mathbb{R}^n$ be a domain. Suppose u is a solution of the heat equation

$$u_t = \Delta u$$

in $(\Omega \setminus \{0\}) \times (0, T)$. Then u has removable singularities at $\{0\} \times (0, T)$ if and only if for any $0 < t_1 < t_2 < T$ and $\delta \in (0, 1)$ there exists $B_{R_0}(0) \subset \Omega$ depending on t_1, t_2 and δ, such that

$$|u(x, t)| \leq \delta |x|^{2-n}$$

for any $0 < |x| \leq R_0$ and $t_1 \leq t \leq t_2$.

The proof in $[8]$ is based on the Green function estimates of $[9]$ and a careful analysis of the behavior of the solution near the singularities using the Duhamel principle. In this paper we will use the Schauder estimates for the heat equation $[2]$, $[12]$, and the technique of $[1]$ and $[7]$ to give two different simple proofs of the above result. We also obtain the following result for the solution of the heat equation in two dimensions.

Received by the editors September 1, 2009, and, in revised form, September 2, 2009.

2010 Mathematics Subject Classification. Primary 35B65; Secondary 35K05.

Key words and phrases. Removable singularities, heat equation.

@2010 American Mathematical Society
Reverts to public domain 28 years from publication

2397
Theorem 2. Let $0 \in \Omega \subset \mathbb{R}^2$ be a domain. Suppose u is a solution of the heat equation in $(\Omega \setminus \{0\}) \times (0, T)$. Then u has removable singularities at $\{0\} \times (0, T)$ if and only if for any $0 < t_1 < t_2 < T$ and $\delta \in (0, 1)$ there exists $B_{R_0}(0) \subset \Omega$ depending on t_1, t_2 and δ such that

$$
|u(x, t)| \leq \delta (\log(1/|x|))^{-1}
$$

for any $0 < |x| \leq R_0$ and $t_1 \leq t \leq t_2$.

Remark 3. Note that the function $\log |x|$ satisfies the heat equation in $(\mathbb{R}^2 \setminus \{0\}) \times (0, \infty)$, but it has non-removable singularities on $\{0\} \times (0, \infty)$ and it does not satisfy (3). Hence (3) is sharp.

We start with some definitions. For any set A we let χ_A be the characteristic function of the set A. Let $0 \in \Omega \subset \mathbb{R}^n$ be a bounded domain. We say that a solution u of the heat equation (1) in $(\Omega \setminus \{0\}) \times (0, T)$ has removable singularities at $\{0\} \times (0, T)$ if there exists a classical solution v of (1) in $\Omega \times (0, T)$ such that $u = v$ in $(\Omega \setminus \{0\}) \times (0, T)$. For any $R > 0$ let $B_R = B_R(0) = \{x: |x| < R\} \subset \mathbb{R}^n$.

Proof of Theorem 1. Suppose u has removable singularities in $\{0\} \times (0, T)$. By the same argument as in the proof in section 3 of [5], for any $0 < t_1 < t_2 < T$ and $\delta \in (0, 1)$ there exists $\overline{B}_{R_0} \subset \Omega$ depending on t_1, t_2 and δ such that (2) holds.

Suppose (2) holds. Then for any $0 < t_1 < t_2 < T$ and $\delta \in (0, 1)$ there exists $\overline{B}_{R_0} \subset \Omega$ depending on t_1, t_2 and δ such that (2) holds for any $0 < |x| \leq R_0$ and $t_1 \leq t \leq t_2$.

For any $0 < |x| \leq R_0$, let

$$
w(y, s) = u(|x| y, |x|^2 s) \quad \forall 0 < |y| \leq R_0/|x|, t_1/|x|^2 \leq s \leq t_2/|x|^2.
$$

Then w is a solution of (1) in $(\overline{B}_1 \setminus \{0\}) \times (|x|^{-2} t_1, |x|^{-2} t_2)$. By (2),

$$
|w(y, s)| \leq \delta (|x| |y|)^{2-n} \quad \forall 0 < |y| \leq R_0/|x|, t_1/|x|^2 \leq s \leq t_2/|x|^2.
$$

Let $t_1 < t_3 < t_2$. Then

$$
t_3/|x|^2 - t_1/|x|^2 \geq t_3 - t_1/R_0^2.
$$

By the parabolic Schauder estimates [2], [12], (5) and (6), there exists a constant $C_1 > 0$ such that

$$
|\nabla w(y, s)| \leq C_1 \sup_{1/2 \leq |z| \leq 1} w(z, \tau) \leq C_2 \delta |x|^{2-n}
$$

holds for any $2/3 \leq |y| \leq 3/4$, $t_3/|x|^2 \leq s \leq t_2/|x|^2$, where $C_2 = 2^{n-2} C_1$. By (4) and (7),

$$
|\nabla u(z, t)| \leq C_2 \delta |x|^{1-n} \quad \forall |z| = 3/4 |x|, 0 < |x| \leq R_0, t_3 \leq t \leq t_2
$$

holds for any $2/3 \leq |x| \leq 3/4$, $t_3/|x|^2 \leq s \leq t_2/|x|^2$, where $C_2 = 2^{n-2} C_1$. By (4) and (8),

$$
|\nabla u(z, t)| \leq C_2 \delta |z|^{1-n} \quad \forall |z| = 3/4 R_0, t_3 \leq t \leq t_2.
$$

Let $R_1 = 3/(4R_0)$. We will now use a modification of the proof of Lemma 2.3 of [11] and Lemma 2.1 of [7] to complete the argument. We will first show that u satisfies
(1) in $\Omega \times (t_1, t_2)$ in the distribution sense. Since u satisfies (1) in $(\Omega \setminus \{0\}) \times (0, T)$, for any $0 < \varepsilon < R_1$ and $\eta \in C_0^\infty(\Omega \times (0, T))$ we have

$$
\int_{\Omega \setminus B_\varepsilon} u \eta \, dx \bigg|_{t_3}^{t_2} = \int_{t_3}^{t_2} \int_{\Omega \setminus B_\varepsilon} u \eta \, dx dt - \int_{t_3}^{t_2} \int_{\Omega \setminus B_\varepsilon} \nabla u \cdot \nabla \eta \, dx dt\]

$$

\begin{align*}
&- \int_{t_3}^{t_2} \int_{\partial B_\varepsilon} \eta \frac{\partial u}{\partial n} \, d\sigma dt,
\end{align*}

(9)

where $\partial u / \partial n$ is the derivative of u with respect to the unit outward normal at ∂B_ε. By (8),

$$
\limsup_{\varepsilon \to 0} \left| \int_{t_3}^{t_2} \int_{\partial B_\varepsilon} \eta \frac{\partial u}{\partial n} \, d\sigma dt \right| \leq C_2 \delta (t_2 - t_3) |\partial B_1| \|\eta\|_{L^\infty}.
$$

Since $\delta > 0$ is arbitrary, it follows that

$$
\lim_{\varepsilon \to 0} \int_{t_3}^{t_2} \int_{\partial B_\varepsilon} \eta \frac{\partial u}{\partial n} \, d\sigma dt dt dx dt = 0.
$$

By (8) and the Lebesgue dominated convergence theorem,

$$
\lim_{\varepsilon \to 0} \int_{t_3}^{t_2} \int_{\Omega \setminus B_\varepsilon} \nabla u \cdot \nabla \eta \, dx dt = \int_{t_3}^{t_2} \int_\Omega \nabla u \cdot \nabla \eta \, dx dt.
$$

Letting $\varepsilon \to 0$ in (9), by (10) and (11) it follows that

$$
\int_{t_3}^{t_2} \int_\Omega u \eta \, dx dt = \int_{t_3}^{t_2} \int_\Omega u \eta \, dx dt
$$

(12)

Hence u is a distribution solution of (1) in $\Omega \times (t_1, t_2)$. By (2), for any $1 \leq p < \frac{n}{n-2}$ there exists a constant $C'_p > 0$ such that

$$
\sup_{t_1 \leq t \leq t_2} \int_{B_{R_0}} u(x, t)^p \, dx \leq C'_p.
$$

By (12) and (13) and an argument similar to the proof of [11] and section 1 of [10], $u \in L^\infty_{loc}(B_{R_0} \times (t_1, t_2))$. We now let v be the solution of

$$
\begin{align*}
v_t - \Delta v &= 0 \quad \text{in } B_{R_1} \times (t_3, t_2), \\
\frac{\partial v}{\partial n}(x, t) &= \frac{\partial u}{\partial n}(x, t) \quad \text{on } \partial B_{R_1} \times (t_3, t_2), \\
v(x, t_3) &= u(x, t_3) \quad \text{in } B_{R_1}.
\end{align*}
$$

(14)

For any $0 \leq h \in C_0^\infty(B_{R_1})$ and $t_3 < t \leq t_2$ let η be the solution of

$$
\begin{align*}
\eta_t + \Delta \eta &= 0 \quad \text{in } B_{R_1} \times (t_3, t), \\
\frac{\partial \eta}{\partial n}(x, t) &= 0 \quad \text{on } \partial B_{R_1} \times (t_3, t), \\
\eta(x, t) &= h(x) \quad \text{in } B_{R_1}.
\end{align*}
$$

(15)

By the maximum principle,

$$
0 \leq \eta \leq \|h\|_{L^\infty} \quad \text{in } B_{R_1} \times (t_3, t).
$$

(16)
Then by (14) and (15),
\begin{equation}
\int_{B_{R_1} \setminus B_1} (u - v) \eta \, dx \bigg|_{t_3}^{t} = \int_{t_3}^{t} \int_{B_{R_1} \setminus B_1} [(u - v) \eta_t + (u - v) \eta] \, dx \, dt \\
= \int_{t_3}^{t} \int_{B_{R_1} \setminus B_1} [(u - v) \eta_t + \Delta(u - v) \eta] \, dx \, dt \\
= \int_{t_3}^{t} \int_{B_{R_1} \setminus B_1} (u - v) (\eta_t + \Delta \eta) \, dx \, dt \\
- \int_{t_3}^{t} \int_{\partial B_1} \eta \frac{\partial}{\partial n} (u - v) \, d\sigma \, dt + \int_{t_3}^{t} \int_{\partial B_1} (u - v) \frac{\partial \eta}{\partial n} \, d\sigma \, dt \\
= - \int_{t_3}^{t} \int_{\partial B_1} \eta \frac{\partial}{\partial n} (u - v) \, d\sigma \, dt + \int_{t_3}^{t} \int_{B_{R_1} \setminus B_1} (u - v) \eta_t \, dx \, dt \\
- \int_{t_3}^{t} \int_{\partial B_1} \eta \frac{\partial}{\partial n} (u - v) \, d\sigma \, dt \\
- \int_{t_3}^{t} \int_{\partial B_1} \eta \frac{\partial}{\partial n} (u - v) \, d\sigma \, dt.
\end{equation}

By (2),
\begin{equation}
\left| \int_{t_3}^{t} \int_{\partial B_1} (u - v) \frac{\partial \eta}{\partial n} \, d\sigma \, dt \right| \leq C \varepsilon \to 0 \quad \text{as} \quad \varepsilon \to 0.
\end{equation}

By (8) and (16),
\begin{equation}
\limsup_{\varepsilon \to 0} \left| \int_{t_3}^{t} \int_{\partial B_1} \frac{\partial}{\partial n} (u - v) \, d\sigma \, dt \right| \leq C \delta.
\end{equation}

Since \(\delta > 0 \) is arbitrary, by (19) it follows that
\begin{equation}
\lim_{\varepsilon \to 0} \left| \int_{t_3}^{t} \int_{\partial B_1} \frac{\partial}{\partial n} (u - v) \, d\sigma \, dt \right| = 0.
\end{equation}

Letting \(\varepsilon \to 0 \) in (17), by (18) and (20),
\begin{equation}
\int_{B_{R_1}} (u - v)(x, t) h(x) \, dx = \int_{B_{R_1}} (u - v)(x, t_3) \eta(x, t_3) \, dx = 0.
\end{equation}

We now choose a sequence of functions \(h_i \in C_0^\infty(B_{R_1}) \) converging to \(\chi\{u>v\} \) a.e. \(x \in B_{R_1} \) as \(i \to \infty \). Putting \(h = h_i \) in (21) and letting \(i \to 0 \),
\begin{equation}
\int_{B_{R_1}} (u - v)_+(x, t) \, dx = 0 \quad \forall t_3 < t \leq t_2.
\end{equation}

By interchanging the roles of \(u \) and \(v \) we get
\begin{equation}
\int_{B_{R_1}} (v - u)_+(x, t) \, dx = 0 \quad \forall t_3 < t \leq t_2.
\end{equation}

Hence by (22) and (23),
\begin{equation}
\int_{B_{R_1}} |v - u|(x, t) \, dx = 0 \quad \forall t_3 < t \leq t_2
\end{equation}
\(\Rightarrow \) \(u(x, t) = v(x, t) \) \(\forall 0 < |x| \leq R_1, t_3 < t \leq t_2 \).

Hence \(u \) has removable singularities on \(\{0\} \times (t_3, t_2) \). Since \(0 < t_1 < t_3 < t_2 < T \) is arbitrary, \(u \) has removable singularities on \(\{0\} \times (0, T) \) and the theorem follows. \(\square \)

Proof of Theorem 2. Theorem 2 follows by an argument very similar to the proof of Theorem 1 but with (3) replacing (2) in the argument. \(\square \)
An alternate proof of Theorems 1 and 2. We will show that when (2) (respectively (3)) holds, then \(u \) has removable singularities at \(\{0\} \times (0,T) \). Suppose (2) holds if \(n \geq 3 \) and (3) holds if \(n = 2 \). We first observe that by the previous argument, for any \(0 < t_1 < t_2 < T \), \(u \) satisfies (12) and \(u \in L^\infty_{\text{loc}}(\Omega \times (0,T)) \). Let \(\overline{B}_{R_1} \subset \Omega \) and let \(w \) be the solution of
\[
\begin{cases}
 w_t = \Delta w & \text{in } B_{R_1} \times (t_1, t_2), \\
 w = u & \text{on } \overline{B}_{R_1} \times \{t_1\} \cup \partial B_{R_1} \times (t_1, t_2).
\end{cases}
\]

By the maximum principle,
\[
\|w\|_{L^\infty} \leq \|u\|_{L^\infty(B_{R_1} \times (t_1, t_2))} < \infty.
\]

For any \(\varepsilon > 0 \), let
\[
w_\varepsilon = \begin{cases}
 w - u + \varepsilon|x|^{2-n} & \text{if } n \geq 3, \\
 w - u + \varepsilon \log(R_1/|x|) & \text{if } n = 2.
\end{cases}
\]

Then \(w_\varepsilon \) satisfies
\[
\begin{cases}
 w_{\varepsilon, t} = \Delta w_\varepsilon & \text{in } (B_{R_1} \setminus \{0\}) \times (t_1, t_2), \\
 w_\varepsilon \geq u & \text{on } \partial B_{R_1} \times (t_1, t_2) \cup \overline{B}_{R_1} \times \{t_1\}.
\end{cases}
\]

By (2), (3), and (25) there exists a constant \(0 < r_0 < R_1 \) such that
\[
w_\varepsilon \geq 0 \quad \text{on } \partial B_{r_1} \times [t_1, t_2]
\]
for all \(0 < r_1 \leq r_0 \). By the maximum principle in \((B_{R_1} \setminus B_{r_1}) \times (t_1, t_2) \),
\[
w_\varepsilon \geq 0 \quad \text{in } (B_{R_1} \setminus B_{r_1}) \times (t_1, t_2)
\]
\[
\Rightarrow \quad \begin{cases}
 w - u + \varepsilon|x|^{2-n} \geq 0 & \forall r_1 \leq |x| \leq R_1, t_1 \leq t \leq t_2 \quad \text{if } n \geq 3, \\
 w - u + \varepsilon \log(R_0/|x|) \geq 0 & \forall r_1 \leq |x| \leq R_1, t_1 \leq t \leq t_2 \quad \text{if } n = 2
\end{cases}
\]

\[
\Rightarrow \quad w \geq u \quad \forall 0 < |x| \leq R_1, t_1 \leq t \leq t_2 \quad \text{as } r_1 \to 0, \varepsilon \to 0.
\]

Similarly, by considering the function
\[
v_\varepsilon = \begin{cases}
 w - u - \varepsilon|x|^{2-n} & \text{if } n \geq 3, \\
 w - u - \varepsilon \log(R_1/|x|) & \text{if } n = 2
\end{cases}
\]
and applying the maximum principle and letting \(\varepsilon \to 0 \), we get
\[
w \leq u \quad \forall 0 < |x| \leq R_1, t_1 \leq t \leq t_2.
\]

By (26) and (27) we get (24), and Theorem 1 and Theorem 2 follow. \(\square \)

References

