Joining up to the generalized high degrees

Authors:
Philip Ellison and Andrew E. M. Lewis

Journal:
Proc. Amer. Math. Soc. **138** (2010), 2949-2960

MSC (2000):
Primary 03D28; Secondary 03D10

Published electronically:
March 29, 2010

MathSciNet review:
2644906

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that every generalized high Turing degree is the join of two minimal degrees, thereby settling a conjecture of Posner's from the 70s.

**[BC]**S. B. Cooper,*Degrees of unsolvability complementary between recursively enumerable degrees. I*, Ann. Math. Logic**4**(1972), 31–73. MR**0294126****[BC2]**S. B. Cooper,*Minimal degrees and the jump operator*, J. Symbolic Logic**38**(1973), 249–271. MR**0347572****[N4]**R. Downey, N. Greenberg, A.E.M. Lewis, A. Montalbán, Extensions of uppersemilattice embeddings below computably enumerable degrees, submitted.**[MG]**M. Giorgi, PhD thesis, Leeds University.**[GMS]**Noam Greenberg, Antonio Montalbán, and Richard A. Shore,*Generalized high degrees have the complementation property*, J. Symbolic Logic**69**(2004), no. 4, 1200–1220. MR**2135663**, 10.2178/jsl/1102022219**[CJ]**Carl G. Jockusch Jr.,*Simple proofs of some theorems on high degrees of unsolvability*, Canad. J. Math.**29**(1977), no. 5, 1072–1080. MR**0476460****[JP]**Carl G. Jockusch Jr. and David B. Posner,*Double jumps of minimal degrees*, J. Symbolic Logic**43**(1978), no. 4, 715–724. MR**518677**, 10.2307/2273510**[AK]**Antonín Kučera,*Measure, Π⁰₁-classes and complete extensions of 𝑃𝐴*, Recursion theory week (Oberwolfach, 1984) Lecture Notes in Math., vol. 1141, Springer, Berlin, 1985, pp. 245–259. MR**820784**, 10.1007/BFb0076224**[ML]**Manuel Lerman,*Degrees of unsolvability*, Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1983. Local and global theory. MR**708718****[AL]**Andrew Lewis,*Minimal complements for degrees below 0’*, J. Symbolic Logic**69**(2004), no. 4, 937–966. MR**2135652**, 10.2178/jsl/1102022208**[AL2]**Andrew E. M. Lewis,*The minimal complementation property above 0’*, MLQ Math. Log. Q.**51**(2005), no. 5, 470–492. MR**2163759**, 10.1002/malq.200410044**[DP]**F. R. Drake and S. S. Wainer (eds.),*Recursion theory: its generalisations and applications*, London Mathematical Society Lecture Note Series, vol. 45, Cambridge University Press, Cambridge-New York, 1980. MR**598301****[GS]**Gerald E. Sacks,*A minimal degree less than 0’*, Bull. Amer. Math. Soc.**67**(1961), 416–419. MR**0126380**, 10.1090/S0002-9904-1961-10652-6**[RS]**Robert I. Soare,*Recursively enumerable sets and degrees*, Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1987. A study of computable functions and computably generated sets. MR**882921**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
03D28,
03D10

Retrieve articles in all journals with MSC (2000): 03D28, 03D10

Additional Information

**Philip Ellison**

Affiliation:
Department of Pure Mathematics, University of Leeds, Leeds, LS29JT, England

Email:
phil.j.ellison@googlemail.com

**Andrew E. M. Lewis**

Affiliation:
Department of Pure Mathematics, University of Leeds, Leeds, LS29JT, England

Email:
andy@aemlewis.co.uk

DOI:
https://doi.org/10.1090/S0002-9939-10-10299-8

Received by editor(s):
March 8, 2009

Received by editor(s) in revised form:
September 20, 2009, and November 20, 2009

Published electronically:
March 29, 2010

Additional Notes:
The first author was supported by an EPSRC research studentship.

The second author was supported by a Royal Society University Research Fellowship

Communicated by:
Julia Knight

Article copyright:
© Copyright 2010
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.