The geometry of Euclidean convolution inequalities and entropy
Authors:
Dario CorderoErausquin and Michel Ledoux
Journal:
Proc. Amer. Math. Soc. 138 (2010), 27552769
MSC (2010):
Primary 42A85, 52A40, 60E15; Secondary 60G15, 94A17
Published electronically:
April 21, 2010
Previous version:
Original version posted March 26, 2010
Corrected version:
Current version corrects publisher's introduction of $=\mu_2$ in the first sentence of the fourth paragraph and the introduction of $_n$ at the end of the second line of the fifth paragraph.
MathSciNet review:
2644890
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: The goal of this paper is to show that some convolution type inequalities from Harmonic Analysis and Information Theory, such as Young's convolution inequality (with sharp constant), Nelson's hypercontractivity of the Hermite semigroup or Shannon's inequality, can be reduced to a simple geometric study of frames of . We shall derive directly entropic inequalities, which were recently proved to be dual to the BrascampLieb convolution type inequalities.
 1.
Keith
Ball, Convex geometry and functional analysis, Handbook of the
geometry of Banach spaces, Vol. I, NorthHolland, Amsterdam, 2001,
pp. 161–194. MR 1863692
(2003c:52001), 10.1016/S18745849(01)800061
 2.
F.
Barthe, Optimal Young’s inequality and its converse: a simple
proof, Geom. Funct. Anal. 8 (1998), no. 2,
234–242. MR 1616143
(99f:42021), 10.1007/s000390050054
 3.
F.
Barthe, D.
CorderoErausquin, and B.
Maurey, Entropy of spherical marginals and related
inequalities, J. Math. Pures Appl. (9) 86 (2006),
no. 2, 89–99 (English, with English and French summaries). MR 2247452
(2008a:62004), 10.1016/j.matpur.2006.04.003
 4.
F. Barthe, D. CorderoErausquin, M. Ledoux and B. Maurey, Correlation and BrascampLieb inequalities for Markov semigroups, preprint (2009).
 5.
William
Beckner, Inequalities in Fourier analysis, Ann. of Math. (2)
102 (1975), no. 1, 159–182. MR 0385456
(52 #6317)
 6.
Jonathan
Bennett and Neal
Bez, Closure properties of solutions to heat inequalities, J.
Geom. Anal. 19 (2009), no. 3, 584–600. MR 2496567
(2010g:35350), 10.1007/s1222000990702
 7.
Herm
Jan Brascamp and Elliott
H. Lieb, Best constants in Young’s inequality, its converse,
and its generalization to more than three functions, Advances in Math.
20 (1976), no. 2, 151–173. MR 0412366
(54 #492)
 8.
Jonathan
Bennett, Anthony
Carbery, Michael
Christ, and Terence
Tao, The BrascampLieb inequalities: finiteness, structure and
extremals, Geom. Funct. Anal. 17 (2008), no. 5,
1343–1415. MR 2377493
(2009c:42052), 10.1007/s0003900706196
 9.
Eric
A. Carlen, Superadditivity of Fisher’s information and
logarithmic Sobolev inequalities, J. Funct. Anal. 101
(1991), no. 1, 194–211. MR 1132315
(92k:94006), 10.1016/00221236(91)90155X
 10.
Eric
A. Carlen and Dario
CorderoErausquin, Subadditivity of the entropy and its relation to
BrascampLieb type inequalities, Geom. Funct. Anal.
19 (2009), no. 2, 373–405. MR 2545242
(2010i:26032), 10.1007/s000390090001y
 11.
E.
A. Carlen, E.
H. Lieb, and M.
Loss, A sharp analog of Young’s inequality on
𝑆^{𝑁} and related entropy inequalities, J. Geom. Anal.
14 (2004), no. 3, 487–520. MR 2077162
(2005k:82046), 10.1007/BF02922101
 12.
Amir
Dembo, Thomas
M. Cover, and Joy
A. Thomas, Informationtheoretic inequalities, IEEE Trans.
Inform. Theory 37 (1991), no. 6, 1501–1518. MR 1134291
(92h:94005), 10.1109/18.104312
 13.
Leonard
Gross, Logarithmic Sobolev inequalities, Amer. J. Math.
97 (1975), no. 4, 1061–1083. MR 0420249
(54 #8263)
 14.
Edward
Nelson, A quartic interaction in two dimensions, Mathematical
Theory of Elementary Particles (Proc. Conf., Dedham, Mass., 1965) M.I.T.
Press, Cambridge, Mass., 1966, pp. 69–73. MR 0210416
(35 #1309)
 1.
 K. Ball, Convex geometry and functional analysis, in Handbook of the Geometry of Banach Spaces, Vol. I, 161194, eds. W. Johnson and J. Lindenstrauss, NorthHolland, Amsterdam, 2001. MR 1863692 (2003c:52001)
 2.
 F. Barthe, Optimal Young's inequality and its converse, a simple proof, Geom. Funct. Analysis 80 (1998), 234242. MR 1616143 (99f:42021)
 3.
 F. Barthe, D. CorderoErausquin and B. Maurey, Entropy of spherical marginals and related inequalities, J. Math. Pures Appl. 86 (2006), 8999. MR 2247452 (2008a:62004)
 4.
 F. Barthe, D. CorderoErausquin, M. Ledoux and B. Maurey, Correlation and BrascampLieb inequalities for Markov semigroups, preprint (2009).
 5.
 W. Beckner, Inequalities in Fourier analysis, Ann. of Math. (2) 102 (1975), 159182. MR 0385456 (52:6317)
 6.
 J. Bennett and N. Bez, Closure properties of solutions to heat inequalities, J. Geom. Anal. 19 (2009), 584600. MR 2496567
 7.
 H. Brascamp and E. Lieb, The best constant in Young's inequality and its generalization to more than three functions, Advances in Math. 20 (1976), 151173. MR 0412366 (54:492)
 8.
 J. Bennett, A. Carbery, M. Christ and T. Tao, The BrascampLieb inequalities: Finiteness, structure, and extremals, Geom. Funct. Analysis 17 (2008), 13431415. MR 2377493 (2009c:42052)
 9.
 E. Carlen, Superadditivity of Fisher information and logarithmic Sobolev inequalities, J. Funct. Analysis 101 (1991), 194211. MR 1132315 (92k:94006)
 10.
 E. Carlen and D. CorderoErausquin, Subadditivity of the entropy and its relation to BrascampLieb type inequalities, Geom. Funct. Analysis 19 (2009), 373405. MR 2545242
 11.
 E. Carlen, E. Lieb and M. Loss, A sharp form of Young's inequality on and related entropy inequalities, Jour. Geom. Analysis 14 (2004), 487520. MR 2077162 (2005k:82046)
 12.
 A. Dembo, T. Cover and J. Thomas, Informationtheoretic inequalities, IEEE Trans. Inform. Theory 37 (1991), 15011518. MR 1134291 (92h:94005)
 13.
 L. Gross, Logarithmic Sobolev inequalities, Amer. J. Math. 97 (1975), 10611083. MR 0420249 (54:8263)
 14.
 E. Nelson, A quartic interaction in two dimensions, in Mathematical Theory of Elementary Particles (Proc. Conf., Dedham, Mass., 1965), M.I.T. Press, 1966, pp. 6973. MR 0210416 (35:1309)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (2010):
42A85,
52A40,
60E15,
60G15,
94A17
Retrieve articles in all journals
with MSC (2010):
42A85,
52A40,
60E15,
60G15,
94A17
Additional Information
Dario CorderoErausquin
Affiliation:
Institut de Mathématiques de Jussieu, Université Pierre et Marie Curie (Paris 6), 4 place Jussieu, 75252 Paris Cedex 05, France
Email:
cordero@math.jussieu.fr
Michel Ledoux
Affiliation:
Institut de Mathématiques de Toulouse, Université de Toulouse, 31062 Toulouse, France
Email:
ledoux@math.univtoulouse.fr
DOI:
http://dx.doi.org/10.1090/S0002993910103049
Received by editor(s):
July 16, 2009
Published electronically:
April 21, 2010
Communicated by:
Marius Junge
Article copyright:
© Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.
