Compression bounds for wreath products

Author:
Sean Li

Journal:
Proc. Amer. Math. Soc. **138** (2010), 2701-2714

MSC (2010):
Primary 20F65, 51F99

DOI:
https://doi.org/10.1090/S0002-9939-10-10307-4

Published electronically:
April 5, 2010

MathSciNet review:
2644886

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that if and are finitely generated groups whose Hilbert compression exponent is positive, then so is the Hilbert compression exponent of the wreath product . We also prove an analogous result for coarse embeddings of wreath products. In the special case , our result implies that the Hilbert compression exponent of is at least , answering a question posed by several authors.

**[AGS06]**G.N. Arzhantseva, V.S. Guba, and M.V. Sapir,*Metrics on diagram groups and uniform embeddings in a Hilbert space*, Comment. Math. Helv.**81**(2006), no. 4, 911-929. MR**2271228 (2007k:20084)****[ANP09]**T. Austin, A. Naor, and Y. Peres,*The wreath product of with has Hilbert compression exponent*, Proc. Amer. Math. Soc.**137**(2009), no. 1, 85-90. MR**2439428 (2009f:20060)****[BL00]**Y. Benyamini and J. Lindenstrauss,*Geometric nonlinear functional analysis. Vol. 1*, American Mathematical Society Colloquium Publications, vol. 48, American Mathematical Society, 2000. MR**1727673 (2001b:46001)****[CCJ**P.-A. Cherix, M. Cowling, P. Jolissaint, P. Julg, and A. Valette,^{+}01]*Groups with the Haagerup property*, Progress in Mathematics, vol. 197, Birkhäuser Verlag, 2001. MR**1852148 (2002h:22007)****[CK06]**J. Cheeger and B. Kleiner,*Differentiating maps into and the geometry of BV functions*, to appear in Ann. of Math.**[dCSV09]**Y. de Cornulier, Y. Stalder, and A. Valette,*Proper actions of wreath products and generalizations*, preprint, 2009.**[DL97]**M.M. Deza and M. Laurent,*Geometry of cuts and metrics*, Algorithms and Combinatorics, vol. 15, Springer-Verlag, 1997. MR**1460488 (98g:52001)****[FJ03]**R.J. Fleming and J.E. Jamison,*Isometries on Banach spaces: function spaces*, Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, vol. 129, Chapman & Hall/CRC, 2003. MR**1957004 (2004j:46030)****[Gal08]**Ś.R. Gal,*Asymptotic dimension and uniform embeddings*, Groups Geom. Dyn.**2**(2008), no. 1, 63-84. MR**2367208 (2009d:20105)****[GK04]**E. Guentner and J. Kaminker,*Exactness and uniform embeddability of discrete groups*, J. London Math. Soc. (2)**70**(2004), no. 3, 703-718. MR**2160829 (2006i:43006)****[Lam58]**J. Lamperti,*On the isometries of certain function spaces*, Pacific J. Math.**8**(1958), 459-466. MR**0105017 (21:3764)****[Mat02]**J. Matoušek,*Lectures on discrete geometry*, Graduate Texts in Mathematics, vol. 212, Springer-Verlag, 2002. MR**1899299 (2003f:52011)****[NP08]**A. Naor and Y. Peres,*Embeddings of discrete groups and the speed of random walks*, Int. Math. Res. Not. (2008). MR**2439557 (2009m:20067)****[NP09]**-,*compression, traveling salesmen, and stable walks*, preprint.**[SV07]**Y. Stalder and A. Valette,*Wreath products with the integers, proper actions and Hilbert space compression*, Geom. Dedicata**124**(2007), 199-211. MR**2318545 (2008i:20053)****[Tes09]**R. Tessera,*Asymptotic isoperimetry on groups and uniform embeddings into Banach spaces*, to appear in Comment. Math. Helv., 2009.**[Woj91]**P. Wojtaszczyk,*Banach spaces for analysts*, Cambridge Studies in Advanced Mathematics, vol. 25, Cambridge University Press, 1991. MR**1144277 (93d:46001)****[WW75]**J.H. Wells and L.R. Williams,*Embeddings and extensions in analysis*, Springer-Verlag, 1975. MR**0461107 (57:1092)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2010):
20F65,
51F99

Retrieve articles in all journals with MSC (2010): 20F65, 51F99

Additional Information

**Sean Li**

Affiliation:
Courant Institute of Mathematical Sciences, 251 Mercer Street, New York, New York 10012-1185

Email:
seanli@cims.nyu.edu

DOI:
https://doi.org/10.1090/S0002-9939-10-10307-4

Received by editor(s):
September 2, 2009

Received by editor(s) in revised form:
December 3, 2009

Published electronically:
April 5, 2010

Additional Notes:
This work was supported in part by NSF grants CCF-0635078 and CCF-0832795.

Communicated by:
Alexander N. Dranishnikov

Article copyright:
© Copyright 2010
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.