Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Towards a quantum Galois theory for quantum double algebras of finite groups


Author: Jiang Lining
Journal: Proc. Amer. Math. Soc. 138 (2010), 2793-2801
MSC (2010): Primary 46N50, 16T05
DOI: https://doi.org/10.1090/S0002-9939-10-10315-3
Published electronically: March 17, 2010
MathSciNet review: 2644893
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Suppose that $ G$ is a finite group and $ D(G)$ the quantum double algebra of $ G$. Let $ \mathcal A$ be the field algebra of $ G$-spin models. There is a natural action of $ D(G)$ on $ \mathcal A$ such that $ \mathcal A$ becomes a $ D(G)$-module algebra. For a subgroup $ H$ of $ G$, there is a Hopf subalgebra $ D(G;H)$ of $ D(G)$. Based on the concrete construction of a $ D(G;H)$ fixed point subalgebra, the paper proves that $ D(G;H)$ is Galois closed and thus gives a quantum Galois theory in the field algebra of $ G$-spin models.


References [Enhancements On Off] (What's this?)

  • 1. E. Abe, Hopf algebras, Cambridge University Press, 1977. MR 594432 (83a:16010)
  • 2. J. Bergen, A correspondence theorems for modules over Hopf algebras, Proc. AMS, 121(2), 343-345, 1994. MR 1211578 (94h:16071)
  • 3. S. U. Chase, D. K. Harrison, A. Rosenberg, Galois theory and cohomology of commutative rings, AMS Memoirs, No. 52, 1965. MR 0195922 (33:4118)
  • 4. S. U. Chase, M. E. Sweedler, Hopf algebras and Galois theory, Lecture Notes in Math., 97, Springer, Berlin, 1969. MR 0260724 (41:5348)
  • 5. K. A. Dancer, P. S. Isaac, J. Links, Representations of quantum doubles of finite group algebras and spectral parameter dependent solutions of the Yang-Baxter equations, J. Math. Phys., 47, 103511, 2006. MR 2268877 (2007h:17016)
  • 6. C. Dong, G. Mason, On quantum Galois theory, Duke Math. J., 86, 305-321, 1997. MR 1430435 (97k:17042)
  • 7. V. O. Ferreira, L. S. I. Murakami, A. Paques, A Hopf-Galois correspondence for free algebras, J. Alg., 276(1), 407-416, 2004. MR 2054404 (2005a:16054)
  • 8. M. D. Gould, Quantum double finite group algebras and their representations, Bull. Austral. Math. Soc., 48, 275-301, 1993. MR 1238802 (94h:16072)
  • 9. A. Hanaki, M. Miyamoto, D. Tambara, Quantum Galois theory for finite groups, Duke Math. J., 97, 541-544, 1999. MR 1682988 (2000g:17043a)
  • 10. L. N. Jiang, Field algebra of $ G$-spin models and its duality, Acta Math. Sinic. (in Chinese), 45(1), 37-42, 2002. MR 1923662 (2003g:46067)
  • 11. V. F. R. Jones, Subfactors and knots, CBMS, No. 80, AMS, Providence, RI, 1991. MR 1134131 (93b:57008)
  • 12. Y. Kawahigashi, Quantum Galois correspondence for subfactors, J. Func. Anal., 167, 481-497, 1999. MR 1716205 (2000g:46090)
  • 13. H. F. Kreimer, M. Takeuchi, Hopf algebras and Galois extensions of an algebra, Indiana Univ. Math. J., 30, 675-692, 1981. MR 625597 (83h:16015)
  • 14. G. Mason, The quantum double of a finite group and its role in conformal field theory, London Mathematical Society Lecture Notes, 212, 405-417, Cambridge University Press, Cambridge, 1995. MR 1337285 (97a:11067)
  • 15. F. V. Oystaeyen, Galois-type correspondences for Hopf-Galois extensions, $ K$-theory, 8, 257-169, 1994. MR 1291021 (95f:16044)
  • 16. D. E. Radford, Minimal quasi-triangular Hopf algebras, J. Alg., 157, 285-315, 1993. MR 1220770 (94c:16052)
  • 17. K. Szlachanyi, P. Vecsernyes, Quantum symmetry and braided group statistics in $ G$-spin models, Comm. Math. Phys., 156, 127-168, 1993. MR 1234107 (94m:81063)
  • 18. A. Van Daele, Y. H. Zhang, Galois theory for multiplier Hopf algebras with integrals, Algebras and Representation Theory 2, 83-106, 1999. MR 1688472 (2000f:16050)
  • 19. T. Yanai, Galois correspondence theorem for Hopf algebra actions, Contemporary Mathematics, 376, 393-411, AMS, Providence, RI, 2005. MR 2147038 (2006c:16072)
  • 20. S. C. Zhang, Y. Z. Zhang, Hopf Galois extension braided tensor categories, arXiv:math.RA/0309448, 7, 19, April 2006.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 46N50, 16T05

Retrieve articles in all journals with MSC (2010): 46N50, 16T05


Additional Information

Jiang Lining
Affiliation: Department of Mathematics, Beijing Institute of Technology, Beijing 100081, People’s Republic of China
Email: jianglining@bit.edu.cn

DOI: https://doi.org/10.1090/S0002-9939-10-10315-3
Keywords: $G$-spin models, quantum double, field algebra, Hopf algebra, Galois closed.
Received by editor(s): January 19, 2009
Received by editor(s) in revised form: October 28, 2009
Published electronically: March 17, 2010
Additional Notes: This research is supported by the Program for New Century Excellent Talents in the University of China and by the National Science Foundation of China (10971011).
Communicated by: Marius Junge
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society