A CORRECTION TO

“ADJUGATES IN BANACH ALGEBRAS”

R. M. BRITS

(Communicated by Nigel J. Kalton)

ABSTRACT. Let A be a semisimple unital Banach algebra. We show that $\text{rank}_A(ab) = \text{rank}_A(ba)$ for all $a, b \in A$ if and only if $\text{soc}(A)$ is contained in the center of A, and $ab \in \text{soc}(A)$ implies $ba \in \text{soc}(A)$ for all $a, b \in A$. This corrects an erroneous statement in R.E. Harte and C. Hernández, Adjugates in Banach algebras, Proc. Amer. Math. Soc. 134(5) (2005), 1397–1404.

If A is a semisimple Banach algebra with identity element 1, then the rank of an element $a \in A$ is defined by

\[\text{rank}_A(a) = \sup_{x \in A} \#\sigma'(x) = \sup_{x \in A} \#\sigma_A'(ax) \leq \infty. \]

Here $\sigma_A(x)$ denotes the spectrum of $x \in A$, $\sigma_A'(x) = (\sigma_A(x) \setminus \{0\})$ and $\#\sigma'(x)$ is the number of elements in $\sigma'(x)$. It can be shown that the set of finite rank elements of A coincides with the socle of A (denoted $\text{soc}(A)$).

Theorem 0.3 of this paper corrects the erroneous claim in [4] (see (2.5)) that $\text{rank}_A(ab) = \text{rank}_A(ba)$ for all $a, b \in A$. The difficulty here stems from the fact that Jacobson’s lemma ([1, p. 33]) is generally speaking not valid for permutations of more than two elements. So although $\sigma_A'(ab) = \sigma_A'(ba)$ for all $a, b \in A$, it is not necessarily true that $\text{rank}_A(ab) = \text{rank}_A(ba)$ for all $a, b \in A$. This is already evident from the fact that in the operator case the standard rank, $\text{rank}(T) = \dim \mathcal{R}(T)$, is equivalent to the spectral rank (1). We start with two lemmas. The first, Lemma 0.1, is an extension of Aupetit and Mouton’s diagonalization theorem.

Lemma 0.1. Let A be a semisimple Banach algebra and $0 \neq a \in \text{soc}(A)$. If there exists $y \in A$ commuting with a such that $\text{rank}_A(a) = \#\sigma_A'(ya)$, then there exist $n = \text{rank}_A(a)$ mutually orthogonal minimal projections p_1, \ldots, p_n and non-zero scalars $\alpha_1, \ldots, \alpha_n$ (not necessarily distinct) such that

\[a = \sum_{j=1}^{n} \alpha_j p_j. \]

Proof. Suppose $\text{rank}_A(a) = \#\sigma_A'(ya) = n$ and that $ya = ay$. We first show that this hypothesis implies that we can actually take y invertible. If a is invertible, then for $b \in A$ arbitrary observe that

\[\#\sigma_A'(b) = \#\sigma_A'(a(a^{-1}b)) \leq \text{rank}_A(a) = n, \]

Received by the editors January 15, 2009 and, in revised form, October 16, 2009.

2010 Mathematics Subject Classification. Primary 46H05, 46H10, 47A10.
which shows that every element of A has a finite spectrum. Consequently, if a is invertible, the Hirschfeld–Johnson criterion implies that A is finite dimensional, and so the Wedderburn–Artin theorem forces y to be invertible. On the other hand, if $0 \in \sigma_A(a)$, then $0 \in \sigma_A(ax)$ for all $x \in A$ because a, and hence also ax, is a left topological divisor of zero. Since the function $\lambda \mapsto a(\lambda - y)$ is analytic from \mathbb{C} into A, and $0 \in \sigma_A(a(\lambda - y))$ for all $\lambda \in \mathbb{C}$ the scarcity theorem [1] Theorem 3.4.25] says that $\{ \lambda \in \mathbb{C} : \#\sigma'_{\lambda}(a(\lambda - y)) < n \}$ is discrete in \mathbb{C}. Hence we can find λ in the resolvent set of y such that $\#\sigma'_{\lambda}(a(\lambda - y)) = n = \text{rank}_A(a)$. So without loss of generality we may assume $y \in A^{-1}$. By Aupetit and Mouton’s diagonalization theorem [2] Theorem 2.8] there exist mutually orthogonal minimal projections p_1, \ldots, p_n and distinct non-zero scalars $\lambda_1, \ldots, \lambda_n$ such that $ay = \sum_{j=1}^n \lambda_j p_j$. Since for each j,
\[p_j = \frac{1}{2\pi i} \int_{\Gamma_j} (\lambda - ay)^{-1} d\lambda, \]
where Γ_j is a small circle surrounding λ_j from the remaining spectrum of ay, we see that y^{-1} commutes with the integrand and thus with p_j. From the minimality of p_j there exists a corresponding $\beta_j \in \mathbb{C}$ such that
\[a = \sum_{j=1}^n \lambda_j p_j y^{-1} = \sum_{j=1}^n \lambda_j p_j y^{-1} p_j = \sum_{j=1}^n \lambda_j \beta_j p_j. \]
If some $\beta_j = 0$, then $p_j y^{-1} = y^{-1} p_j$ implies that $y^{-1} p_j = p_j y^{-1} p_j = \beta_j p_j = 0$ and consequently $p_j = 0$, which is a contradiction. So, $\beta_j \neq 0$ and the thesis follows with $\alpha_j = \lambda_j / \beta_j$. \hfill \Box

Observe that if $y = 1$, then Lemma 0.1 is precisely Aupetit and Mouton’s diagonalization theorem, from which one may further conclude that the α_j are distinct.

For Lemma 0.2 recall that if A is a semisimple Banach algebra and p is a projection in A, then pAp is a semisimple Banach algebra with identity element p. Moreover, if $z \in pAp$, then $\sigma_A(z) = \sigma'_{pAp}(z)$.

Lemma 0.2. If A is a semisimple Banach algebra and $a \in \text{soc}(A)$ is a linear combination of mutually orthogonal projections, say $\{p_1, \ldots, p_n\}$, then there exists a finite dimensional, unital and semisimple subalgebra B of A such that $a \in B$ and $\text{rank}_A(a) = \text{rank}_B(a)$. In particular, we can take $B = pAp$ where $p = \sum_{j=1}^n p_j$ is the identity in B and, moreover, a is then invertible with respect to p in B.

Proof. If $a \in \text{soc}(A)$ and $a = \lambda_1 p_1 + \cdots + \lambda_n p_n$, then the orthogonality of the p_j implies that each $p_j \in \text{soc}(A)$. Also, it is obvious that each $p_j \in pAp$. From [2] Theorem 2.16] we have that $\text{rank}_A(a) = \sum_{j=1}^n \text{rank}_A(p_j)$ and similarly, applying [2] Theorem 2.16] in the algebra pAp, $\text{rank}_{pAp}(a) = \sum_{j=1}^n \text{rank}_{pAp}(p_j)$. But, from the remarks preceding Lemma 0.2 (together with Jacobson’s lemma), we have, for each j,
\[\text{rank}_{pAp}(p_j) = \sup_{x \in A} \#\sigma'_{pAp}(p_j pxp) = \sup_{x \in A} \#\sigma'_{A}(p_j pxp) \]
\[= \sup_{x \in A} \#\sigma'_{A}(p_j x) = \text{rank}_A(p_j), \]
which proves the first part. The inverse of a in pAp is of course $\sum_{j=1}^n \frac{1}{\lambda_j} p_j$. \hfill \Box

In the remaining part of this paper, $Z(A)$ denotes the center of A.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Theorem 0.3. If A is a semisimple Banach algebra, then $\text{rank}_A(ab) = \text{rank}_A(ba)$ for all $a, b \in A$ if and only if both of the following conditions are met:

(i) $\text{soc}(A) \subset Z(A)$;
(ii) $ab \in \text{soc}(A) \Rightarrow ba \in \text{soc}(A)$.

Proof. \Rightarrow Since the finite rank elements coincide with $\text{soc}(A)$, it follows trivially that (ii) holds. To prove (i) it suffices to show, from [3, Corollary 2.2], that 0 is the only nilpotent element of $\text{soc}(A)$. Suppose there is a nilpotent finite rank element a with $a^n = 0 (n \geq 2)$ and $a^k \neq 0$ for $k < n$. With our hypothesis we have, for each $b \in A$, that $\text{rank}_A(aba^{n-1}) = \text{rank}_A(a^n b) = 0$. So

$$\text{rank}_A(a^{n-2}(aba^{n-1})) \leq \text{rank}_A(aba^{n-1}) \Rightarrow \text{rank}_A(a^{n-1}ba^{n-1}) = 0,$$

from which it follows that $(a^{n-1}b)^2 = 0$ and hence that $\sigma_A(a^{n-1}b) = \{0\}$. Since A is semisimple we then have $a^{n-1} = 0$, contradicting the nilpotency index of a.

\Leftarrow Let $a, b \in A$ be arbitrary. From the assumption (ii) we may suppose $\text{rank}(ab) = n$. Then, again from (ii), $ba \in \text{soc}(A) \subset Z(A)$. Since $ab \in Z(A)$, Lemma 0.1 gives

$$ab = \alpha_1 p_1 + \cdots + \alpha_n p_n,$$

where the p_i are distinct non-zero and mutually orthogonal minimal projections. Writing $p = \sum_{i=1}^n p_i$ it follows that ab is invertible in the semisimple finite dimensional algebra pAp. If we observe that $(ab)^2 = (ba)^2$, then $(ba)^2$ belongs to and is invertible in pAp. Invertible elements all having equal rank, we get, using Lemma 0.2,

$$\text{rank}_A(ab) = \text{rank}_{pAp}(ab) = \text{rank}_{pAp}((ba)^2) = \text{rank}_A((ba)^2) \leq \text{rank}_A(ba).$$

So we have shown, for all $a, b \in A$, that $\text{rank}_A(ab) \leq \text{rank}_A(ba)$ and hence the theorem is proved.

The following simple example shows that (ii) is not superfluous in Theorem 0.3:

Let $C(l^2)$ be the ideal of compact operators on l^2 and denote the Calkin algebra by $C = B(l^2)/C(l^2)$. Then C is a B^*-algebra and hence semisimple. Denote by $\Omega : B(l^2) \to C$, $\Omega(T) = \bar{T} = T + C(l^2)$ the canonical quotient homomorphism. If $\text{soc}(C) \neq \{0\}$, then $\Omega^{-1}(\text{soc}(C)) \neq B(l^2)$ would be a two-sided ideal of $B(l^2)$ properly containing $C(l^2)$, which violates the fact that $C(l^2)$ is the unique non-trivial two-sided ideal of $B(l^2)$. So $\text{soc}(C) = \{0\}$. Let $T \in B(l^2)$ be defined by the standard unilateral shift followed by the projection on l^2 which annihilates odd coordinates; let $S \in l^2$ be the projection which annihilates even coordinates. So if we take the semisimple algebra $A = C \times \mathbb{C}^n$, then $\text{soc}(A) \subset Z(A)$. However with $a = (S, 1)$ and $b = (T, 1)$ we get $\text{rank}_A(ab) = n$ but $\text{rank}_A(ba) = \infty$.

References

Department of Mathematics, University of Johannesburg, P.O. Box 524, Auckland Park, 2006, Johannesburg, South Africa

E-mail address: rbrits@uj.ac.za