Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

A generalization of Cartan's theorem on isoparametric cubics


Author: Vladimir G. Tkachev
Journal: Proc. Amer. Math. Soc. 138 (2010), 2889-2895
MSC (2010): Primary 53C42, 35F20, 17A35; Secondary 15A63, 17A75
Published electronically: March 29, 2010
MathSciNet review: 2644901
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We generalize the well-known result of É. Cartan on isoparametric cubics by showing that a homogeneous cubic polynomial solution of the eiconal equation $ \vert\nabla f\vert^2=9\vert x\vert^4$ must be rotationally equivalent to either $ x_n^3-3x_n(x_1^2+\ldots+x_{n-1}^2)$ or to one of four exceptional Cartan cubic polynomials in dimensions $ n=5,8,14,26$.


References [Enhancements On Off] (What's this?)

  • 1. Elie Cartan, Sur des familles remarquables d’hypersurfaces isoparamétriques dans les espaces sphériques, Math. Z. 45 (1939), 335–367 (French). MR 0000169
  • 2. Wu-yi Hsiang, Remarks on closed minimal submanifolds in the standard Riemannian 𝑚-sphere, J. Differential Geometry 1 (1967), 257–267. MR 0225244
  • 3. H. Blaine Lawson Jr., Complete minimal surfaces in 𝑆³, Ann. of Math. (2) 92 (1970), 335–374. MR 0270280
  • 4. Daniel B. Shapiro, Compositions of quadratic forms, de Gruyter Expositions in Mathematics, vol. 33, Walter de Gruyter & Co., Berlin, 2000. MR 1786291
  • 5. V. Tkachev, On a classification of minimal cubics in $ \mathbb{R}^n$, in preparation.
  • 6. Paul Yiu, Quadratic forms between Euclidean spheres, Manuscripta Math. 83 (1994), no. 2, 171–181. MR 1272181, 10.1007/BF02567607
  • 7. R. Wood, Polynomial maps from spheres to spheres, Invent. Math. 5 (1968), 163–168. MR 0227999

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 53C42, 35F20, 17A35, 15A63, 17A75

Retrieve articles in all journals with MSC (2010): 53C42, 35F20, 17A35, 15A63, 17A75


Additional Information

Vladimir G. Tkachev
Affiliation: Department of Mathematics, Royal Institute of Technology, SE-10044 Stockholm, Sweden
Email: tkatchev@kth.se

DOI: http://dx.doi.org/10.1090/S0002-9939-10-10385-2
Keywords: Cartan's theorem, division algebras, composition formulas, quadratic maps, eiconal equation, minimal cubic cones
Received by editor(s): August 20, 2009
Published electronically: March 29, 2010
Communicated by: Chuu-Lian Terng
Article copyright: © Copyright 2010 American Mathematical Society