Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Stability of weighted point evaluation functionals


Authors: Jesús Araujo and Juan J. Font
Journal: Proc. Amer. Math. Soc. 138 (2010), 3163-3170
MSC (2010): Primary 47B38; Secondary 46J10, 47B33
DOI: https://doi.org/10.1090/S0002-9939-10-10214-7
Published electronically: May 12, 2010
MathSciNet review: 2653941
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Given $ \epsilon >0$, a continuous linear functional $ \varphi$ on $ C(X)$ is said to be $ \epsilon$-disjointness preserving if $ \left\vert\varphi(f)\varphi(g)\right\vert\le\epsilon$ whenever $ f,g\in C(X)$ satisfy $ \left\Vert f\right\Vert _{\infty} =\left\Vert g\right\Vert _{\infty} =1$ and $ fg\equiv 0$. In this paper we provide the exact maximal distance from $ \epsilon$-disjointness preserving linear functionals to the set of weighted point evaluation functionals.


References [Enhancements On Off] (What's this?)

  • 1. J. Araujo, E. Beckenstein and L. Narici, Biseparating maps and homeomorphic real-compactifications. J. Math. Anal. Appl. 192 (1995), 258-265. MR 1329423 (96b:46038)
  • 2. J. Araujo and Juan J. Font, Stability of weighted composition operators between spaces of continuous functions. J. London Math. Soc (2) 79 (2009), 363-376. MR 2496519
  • 3. J. Araujo and Juan J. Font, On the stability index for weighted composition operators. Preprint.
  • 4. G. Dolinar, Stability of disjointness preserving mappings. Proc. Amer. Math. Soc. 130 (2002), 129-138. MR 1855629 (2002k:46126)
  • 5. J. J. Font and S. Hernández, On separating maps between locally compact spaces. Arch. Math. (Basel) 63 (1994), 158-165. MR 1289298 (95k:46083)
  • 6. K. Jarosz, Automatic continuity of separating linear isomorphisms. Canad. Math. Bull. 33 (1990), 139-144. MR 1060366 (92j:46049)
  • 7. J.-S. Jeang and N.-C. Wong, Weighted composition operators of $ C_0(X)$'s. J. Math. Anal. Appl. 201 (1996), 981-993. MR 1400575 (97f:47029)
  • 8. B. E. Johnson, Approximately multiplicative functionals. J. London Math. Soc. (2) 34 (1986), 489-510. MR 864452 (87k:46105)
  • 9. B. E. Johnson, Approximately multiplicative maps between Banach algebras. J. London Math. Soc. (2) 37 (1988), 294-316. MR 928525 (89h:46072)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 47B38, 46J10, 47B33

Retrieve articles in all journals with MSC (2010): 47B38, 46J10, 47B33


Additional Information

Jesús Araujo
Affiliation: Departamento de Matemáticas, Estadística y Computación, Facultad de Ciencias, Universidad de Cantabria, Avda. de los Castros, s.n., E-39071 Santander, Spain
Email: araujoj@unican.es

Juan J. Font
Affiliation: Departamento de Matemáticas, Universitat Jaume I, Campus Riu Sec, 8029 AP, Castellón, Spain
Email: font@mat.uji.es

DOI: https://doi.org/10.1090/S0002-9939-10-10214-7
Received by editor(s): June 15, 2009
Received by editor(s) in revised form: September 17, 2009
Published electronically: May 12, 2010
Additional Notes: Research of the first author was partially supported by the Spanish Ministry of Science and Education (Grant number MTM2006-14786).
Research of the second author was partially supported by the Spanish Ministry of Science and Education (Grant number MTM2008-04599) and by Bancaixa (Projecte P1-1B2008-26).
Communicated by: Nigel J. Kalton
Article copyright: © Copyright 2010 American Mathematical Society

American Mathematical Society