Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Periodic orbits of large diameter for circle maps

Authors: Lluís Alsedà and Sylvie Ruette
Journal: Proc. Amer. Math. Soc. 138 (2010), 3211-3217
MSC (2010): Primary 37E10; Secondary 37E15
Published electronically: March 25, 2010
MathSciNet review: 2653946
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ f$ be a continuous circle map and let $ F$ be a lifting of $ f$. In this paper we study how the existence of a large orbit for $ F$ affects its set of periods. More precisely, we show that, if $ F$ is of degree $ d\geq 1$ and has a periodic orbit of diameter larger than 1, then $ F$ has periodic points of period $ n$ for all integers $ n\geq 1$, and thus so has $ f$. We also give examples showing that this result does not hold when the degree is nonpositive.

References [Enhancements On Off] (What's this?)

  • 1. Ll. Alsedà, D. Juher, and P. Mumbrú.
    Periodic behavior on trees.
    Ergodic Theory Dynam. Systems, 25(5):1373-1400, 2005. MR 2173425 (2007k:37053)
  • 2. Ll. Alsedà, J. Llibre, and M. Misiurewicz.
    Combinatorial dynamics and entropy in dimension one.
    Second ed., Advanced Series in Nonlinear Dynamics, 5. World Scientific Publishing Co., Inc., River Edge, NJ, 2000. MR 1807264 (2001j:37073)
  • 3. Ll. Alsedà and S. Ruette.
    Rotation sets for graph maps of degree 1.
    Ann. Inst. Fourier (Grenoble), 58(4):1233-1294, 2008. MR 2427960
  • 4. M. C. Leseduarte and J. Llibre.
    On the set of periods for $ \sigma$ maps.
    Trans. Amer. Math. Soc., 347(12):4899-4942, 1995. MR 1316856 (96c:58142)
  • 5. F. Rhodes and C. L. Thompson.
    Rotation numbers for monotone functions on the circle.
    J. London Math. Soc. (2), 34(2):360-368, 1986. MR 856518 (88b:58127)
  • 6. S. Ruette.
    Rotation set for maps of degree 1 on the graph sigma.
    To appear in Israel Journal of Mathematics. Available on arXiv:0712.3815v1.
  • 7. O. M. Šarkovs$ '$kiĭ.
    Co-existence of cycles of a continuous mapping of the line into itself.
    Ukrain. Mat. Z., 16:61-71, 1964.
    (Russian). MR 0159905 (28:3121)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 37E10, 37E15

Retrieve articles in all journals with MSC (2010): 37E10, 37E15

Additional Information

Lluís Alsedà
Affiliation: Departament de Matemàtiques, Edifici Cc, Universitat Autònoma de Barcelona, 08913 Cerdanyola del Vallès, Barcelona, Spain

Sylvie Ruette
Affiliation: Laboratoire de Mathématiques, Bâtiment 425, CNRS UMR 8628, Université Paris-Sud 11, 91405 Orsay cedex, France

Received by editor(s): July 24, 2009
Received by editor(s) in revised form: December 12, 2009, and December 15, 2009
Published electronically: March 25, 2010
Additional Notes: This work was partially supported by MEC grant number MTM2008-01486.
Communicated by: Bryna Kra
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society