Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

Generic properties of critical points of the scalar curvature for a Riemannian manifold


Authors: Anna Maria Micheletti and Angela Pistoia
Journal: Proc. Amer. Math. Soc. 138 (2010), 3277-3284
MSC (2010): Primary 53A99, 53C21
Published electronically: April 16, 2010
MathSciNet review: 2653957
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Given $ (M,g)$ a smooth compact Riemannian $ N-$manifold, we prove that for generic Riemannian metric $ g$ the critical points of the scalar curvature are nondegenerate.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 53A99, 53C21

Retrieve articles in all journals with MSC (2010): 53A99, 53C21


Additional Information

Anna Maria Micheletti
Affiliation: Dipartimento di Matematica Applicata “U. Dini”, Università di Pisa, via F. Buonarroti 1/c, 56100 Pisa, Italy
Email: a.micheletti@dma.unipi.it

Angela Pistoia
Affiliation: Dipartimento di Metodi e Modelli Matematici, Università di Roma “La Sapienza”, via Antonio Scarpa 16, 00161 Roma, Italy
Email: pistoia@dmmm.uniroma1.it

DOI: http://dx.doi.org/10.1090/S0002-9939-10-10382-7
PII: S 0002-9939(10)10382-7
Keywords: Scalar curvature, nondegenerate critical points.
Received by editor(s): April 13, 2009
Published electronically: April 16, 2010
Additional Notes: The authors were supported by Mi.U.R. project “Metodi variazionali e topologici nello studio di fenomeni non lineari”.
Communicated by: Matthew J. Gursky
Article copyright: © Copyright 2010 American Mathematical Society