Embeddings of -connected -manifolds into

Author:
A. Skopenkov

Journal:
Proc. Amer. Math. Soc. **138** (2010), 3377-3389

MSC (2010):
Primary 57R40, 57Q37; Secondary 57R52

DOI:
https://doi.org/10.1090/S0002-9939-10-10425-0

Published electronically:
May 4, 2010

MathSciNet review:
2653966

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We obtain estimations for isotopy classes of embeddings of closed -connected -manifolds into for and . This is done in terms of an exact sequence involving the Whitney invariants and an explicitly constructed action of on the set of embeddings. The proof involves a reduction to the classification of embeddings of a punctured manifold and uses the *parametric connected sum* of embeddings.

**Corollary.** *Suppose that is a closed almost parallelizable -connected -manifold and . Then the set of isotopy classes of embeddings is in 1-1 correspondence with for .*

**[BG71]**J. C. Becker and H. H. Glover,*Note on the embedding of manifolds in Euclidean space*, Proc. of the Amer. Math. Soc.**27:2**(1971), 405-410. MR**0268903 (42:3800)****[BH70]**J. Boéchat and A. Haefliger,*Plongements différentiables de variétés orientées de dimension dans*, Essays on topology and related topics, Springer, 1970, 156-166. MR**0270384 (42:5273)****[CS08]**D. Crowley and A. Skopenkov,*A classification of smooth embeddings of -manifolds in -space, II*, submitted, arXiv:math/0808.1795.**[HCEC]**`http://www.map.him.uni-bonn.de/index.php/ High_codimension_embeddings:_classification`**[Hu69]**J. F. P. Hudson,*Piecewise-Linear Topology*, Benjamin, New York, Amsterdam, 1969. MR**0248844 (40:2094)****[PCS]**`http://www.map.him.uni-bonn.de/index.php/Parametric_connected_sum`**[Po85]**M. M. Postnikov,*Homotopy theory of CW-complexes*, Nauka, Moscow, 1985 (in Russian).**[Pr07]**V. V. Prasolov,*Elements of Homology Theory*, Graduate Studies in Mathematics, Amer. Math. Soc., Providence, RI, 2007. Earlier Russian version available at http://www.mccme.ru/prasolov. MR**2313004 (2008d:55001)****[Ri70]**R. D. Rigdon,*Thesis*, Ph.D. Thesis (1970).**[RS99]**D. Repovš and A. Skopenkov,*New results on embeddings of polyhedra and manifolds into Euclidean spaces*, Uspekhi Mat. Nauk**54:6**(1999), 61-109 (in Russian); English transl., Russ. Math. Surv.**54:6**(1999), 1149-1196. MR**1744658 (2001c:57028)****[Sa99]**O. Saeki,*On punctured -manifolds in -sphere*, Hiroshima Math. J.**29**(1999), 255-272. MR**1704247 (2000h:57045)****[Sk05]**A. Skopenkov,*A classification of smooth embeddings of -manifolds in -space*, submitted, arXiv:math/0512594.**[Sk06]**A. Skopenkov,*Classification of embeddings below the metastable dimension*, submitted, arXiv:math/0607422.**[Sk07]**A. Skopenkov,*A new invariant and parametric connected sum of embeddings*, Fund. Math.**197**(2007), 253-269. arXiv:math/0509621. MR**2365891 (2008k:57044)****[Sk08]**A. Skopenkov,*Embedding and knotting of manifolds in Euclidean spaces*, in: Surveys in Contemporary Mathematics, Ed. N. Young and Y. Choi, London Math. Soc. Lect. Notes, 347, Cambridge Univ. Press, Cambridge, 2008, 248-342. arXiv:math/0604045. MR**2388495 (2009e:57040)****[Sk081]**A. Skopenkov,*A classification of smooth embeddings of -manifolds in -space*, Math. Zeitschrift**260:3**(2008), 647-672. arXiv:math/0603429. MR**2434474****[Sk]**A. Skopenkov,*Embeddings of -connected -manifolds into*; arXiv:math/ 0812.0263.**[Vr89]**J. Vrabec,*Deforming a PL submanifold of Euclidean space into a hyperplane*, Trans. Amer. Math. Soc.**312:1**(1989), 155-178. MR**937253 (89g:57029)****[Wh50]**J.H.C. Whitehead,*A certain exact sequence*, Annals of Math. (2)**52**(1950), 51-110. MR**0035997 (12:43c)****[Ya83]**T. Yasui,*On the map defined by regarding embeddings as immersions*, Hiroshima Math. J.**13**(1983), 457-476. MR**725959 (85g:57016)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2010):
57R40,
57Q37,
57R52

Retrieve articles in all journals with MSC (2010): 57R40, 57Q37, 57R52

Additional Information

**A. Skopenkov**

Affiliation:
Department of Differential Geometry, Faculty of Mechanics and Mathematics, Moscow State University, Moscow, Russia 119992 – and – Independent University of Moscow, B. Vlasyevskiy, 11, 119002, Moscow, Russia

Email:
skopenko@mccme.ru

DOI:
https://doi.org/10.1090/S0002-9939-10-10425-0

Keywords:
Embedding,
self-intersection,
isotopy,
parametric connected sum

Received by editor(s):
December 16, 2008

Received by editor(s) in revised form:
December 31, 2009

Published electronically:
May 4, 2010

Communicated by:
Alexander N. Dranishnikov

Article copyright:
© Copyright 2010
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.