Arithmetical rank of toric ideals associated to graphs

Author:
Anargyros Katsabekis

Journal:
Proc. Amer. Math. Soc. **138** (2010), 3111-3123

MSC (2010):
Primary 14M25, 13F20, 05C99

DOI:
https://doi.org/10.1090/S0002-9939-2010-10335-0

Published electronically:
May 26, 2010

Previous version:
Original version posted May 17, 2010

Corrected version:
Current version corrects publisher's introduction of misspelling of "arithmetical" in the abstract.

MathSciNet review:
2653936

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be the toric ideal associated to a finite graph . In this paper we study the binomial arithmetical rank and the -homogeneous arithmetical rank of in 2 cases:

- is bipartite,
- is generated by quadratic binomials.

**1.**M. Barile, M. Morales and A. Thoma,*Set-theoretic complete intersections on binomials*, Proc. Amer. Math. Soc.**135**(2002), 1893-1903. MR**1896020 (2003f:14058)****2.**H. Charalambous, A. Katsabekis and A. Thoma,*Minimal systems of binomial generators and the indispensable complex of a toric ideal*, Proc. Amer. Math. Soc.**135**(2007), 3443-3451. MR**2336556 (2009a:13033)****3.**P. Diaconis and B. Sturmfels,*Algebraic algorithms for sampling from conditional distributions*, Ann. Statist.**26**(1) (1998), 363-397. MR**1608156 (99j:62137)****4.**I. Gitler, E. Reyes and R. Villarreal,*Ring graphs and toric ideals*, Electron. Notes Discrete Math.**28**(2007), 393-400. MR**2324044****5.**A. Katsabekis, M. Morales and A. Thoma,*Stanley-Reisner rings and the radicals of lattice ideals*, J. Pure Appl. Algebra**204**(2006), 584-601. MR**2185619 (2006h:13030)****6.**A. Katsabekis, M. Morales and A. Thoma,*Binomial generation of the radical of a lattice ideal*, arXiv: 0811.3833.**7.**A. Katsabekis and A. Thoma,*Matchings in simplicial complexes, circuits and toric varieties*, J. Comb. Theory, Ser. A**114**(2007), 300-310. MR**2293093 (2008b:13035)****8.**M. Katzman,*Bipartite graphs whose edge algebras are complete intersections*, J. Algebra**220**(1999), 519-530. MR**1717356 (2000h:05222)****9.**H. Ohsugi and T. Hibi,*Toric ideals generated by quadratic binomials*, J. Algebra**218**(1999), 509-527. MR**1705794 (2000f:13055)****10.**H. Ohsugi and T. Hibi,*Indispensable binomials of finite graphs*, J. Algebra Appl.**4**(2005), no. 4, 421-434. MR**2166253 (2006e:13023)****11.**B. Sturmfels,*Gröbner Bases and Convex Polytopes*, University Lecture Series, No. 8, American Mathematical Society, Providence, RI, 1996. MR**1363949 (97b:13034)****12.**R. Villarreal,*Rees algebras of edge ideals*, Comm. Algebra**23**(1995), 3513-3524. MR**1335312 (96e:13005)****13.**R. Villarreal,*Monomial Algebras*, Monographs and Textbooks in Pure and Applied Mathematics, 238, Marcel Dekker, Inc., New York, 2001. MR**1800904 (2002c:13001)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2010):
14M25,
13F20,
05C99

Retrieve articles in all journals with MSC (2010): 14M25, 13F20, 05C99

Additional Information

**Anargyros Katsabekis**

Affiliation:
Department of Mathematics, University of the Aegean, 83200 Karlovassi, Samos, Greece

Email:
katsabek@aegean.gr

DOI:
https://doi.org/10.1090/S0002-9939-2010-10335-0

Keywords:
Arithmetical rank,
toric ideals,
graphs

Received by editor(s):
December 16, 2008

Received by editor(s) in revised form:
December 16, 2009

Published electronically:
May 26, 2010

Communicated by:
Bernd Ulrich

Article copyright:
© Copyright 2010
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.