Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Arithmetical rank of toric ideals associated to graphs


Author: Anargyros Katsabekis
Journal: Proc. Amer. Math. Soc. 138 (2010), 3111-3123
MSC (2010): Primary 14M25, 13F20, 05C99
DOI: https://doi.org/10.1090/S0002-9939-2010-10335-0
Published electronically: May 26, 2010
Previous version: Original version posted May 17, 2010
Corrected version: Current version corrects publisher's introduction of misspelling of "arithmetical" in the abstract.
MathSciNet review: 2653936
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ I_{G} \subset K[x_{1},\ldots,x_{m}]$ be the toric ideal associated to a finite graph $ G$. In this paper we study the binomial arithmetical rank and the $ G$-homogeneous arithmetical rank of $ I_G$ in 2 cases:

  1. $ G$ is bipartite,
  2. $ I_G$ is generated by quadratic binomials.
In both cases we prove that the binomial arithmetical rank and the $ G$-homogeneous arithmetical rank coincide with the minimal number of generators of $ I_G$.


References [Enhancements On Off] (What's this?)

  • 1. M. Barile, M. Morales and A. Thoma, Set-theoretic complete intersections on binomials, Proc. Amer. Math. Soc. 135 (2002), 1893-1903. MR 1896020 (2003f:14058)
  • 2. H. Charalambous, A. Katsabekis and A. Thoma, Minimal systems of binomial generators and the indispensable complex of a toric ideal, Proc. Amer. Math. Soc. 135 (2007), 3443-3451. MR 2336556 (2009a:13033)
  • 3. P. Diaconis and B. Sturmfels, Algebraic algorithms for sampling from conditional distributions, Ann. Statist. 26 (1) (1998), 363-397. MR 1608156 (99j:62137)
  • 4. I. Gitler, E. Reyes and R. Villarreal, Ring graphs and toric ideals, Electron. Notes Discrete Math. 28 (2007), 393-400. MR 2324044
  • 5. A. Katsabekis, M. Morales and A. Thoma, Stanley-Reisner rings and the radicals of lattice ideals, J. Pure Appl. Algebra 204 (2006), 584-601. MR 2185619 (2006h:13030)
  • 6. A. Katsabekis, M. Morales and A. Thoma, Binomial generation of the radical of a lattice ideal, arXiv: 0811.3833.
  • 7. A. Katsabekis and A. Thoma, Matchings in simplicial complexes, circuits and toric varieties, J. Comb. Theory, Ser. A 114 (2007), 300-310. MR 2293093 (2008b:13035)
  • 8. M. Katzman, Bipartite graphs whose edge algebras are complete intersections, J. Algebra 220 (1999), 519-530. MR 1717356 (2000h:05222)
  • 9. H. Ohsugi and T. Hibi, Toric ideals generated by quadratic binomials, J. Algebra 218 (1999), 509-527. MR 1705794 (2000f:13055)
  • 10. H. Ohsugi and T. Hibi, Indispensable binomials of finite graphs, J. Algebra Appl. 4 (2005), no. 4, 421-434. MR 2166253 (2006e:13023)
  • 11. B. Sturmfels, Gröbner Bases and Convex Polytopes, University Lecture Series, No. 8, American Mathematical Society, Providence, RI, 1996. MR 1363949 (97b:13034)
  • 12. R. Villarreal, Rees algebras of edge ideals, Comm. Algebra 23 (1995), 3513-3524. MR 1335312 (96e:13005)
  • 13. R. Villarreal, Monomial Algebras, Monographs and Textbooks in Pure and Applied Mathematics, 238, Marcel Dekker, Inc., New York, 2001. MR 1800904 (2002c:13001)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 14M25, 13F20, 05C99

Retrieve articles in all journals with MSC (2010): 14M25, 13F20, 05C99


Additional Information

Anargyros Katsabekis
Affiliation: Department of Mathematics, University of the Aegean, 83200 Karlovassi, Samos, Greece
Email: katsabek@aegean.gr

DOI: https://doi.org/10.1090/S0002-9939-2010-10335-0
Keywords: Arithmetical rank, toric ideals, graphs
Received by editor(s): December 16, 2008
Received by editor(s) in revised form: December 16, 2009
Published electronically: May 26, 2010
Communicated by: Bernd Ulrich
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society