Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Discrete function theory based on skew Weyl relations


Authors: Hilde De Ridder, Hennie De Schepper, Uwe Kähler and Frank Sommen
Journal: Proc. Amer. Math. Soc. 138 (2010), 3241-3256
MSC (2010): Primary 39A12, 30G35, 39A70, 06D50
DOI: https://doi.org/10.1090/S0002-9939-2010-10480-X
Published electronically: May 13, 2010
MathSciNet review: 2653954
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we construct the main ingredients of a discrete function theory in higher dimensions by means of a new ``skew'' type of Weyl relations. We will show that this new type overcomes the difficulties of working with standard Weyl relations in the discrete case. A Fischer decomposition, Euler operator, monogenic projection, and basic homogeneous powers will be constructed.


References [Enhancements On Off] (What's this?)

  • 1. F. Brackx, R. Delanghe, F. Sommen, Clifford Analysis, Research Notes in Mathematics 76, Pitman, Boston, MA, 1982. MR 697564 (85j:30103)
  • 2. F. Brackx, H. De Schepper, F. Sommen, L. Van de Voorde, Discrete Clifford analysis: an overview, Cubo 11(1) (2009), 55-71. MR 2500184
  • 3. F. Brackx, H. De Schepper, F. Sommen, L. Van de Voorde, Discrete Clifford analysis: a germ of function theory. In: I. Sabadini, M. Shapiro, F. Sommen (eds.), Hypercomplex Analysis, Birkhäuser, 2009, 37-53.
  • 4. A.I. Bobenko, C. Mercat, Y. Suris, Linear and nonlinear theories of discrete analytic functions. Integrable structures and isomonodromic Green's function, J. reine und angew. Math. 583 (2005), 117-161. MR 2146854 (2006m:37102)
  • 5. H. De Bie, F. Sommen, Fischer decompositions in superspace. In: Function spaces in complex and Clifford analysis, National University Publishers, Hanoi, 2008, 170-188. MR 2405887 (2009f:58017)
  • 6. R. Delanghe, F. Sommen, V. Soucek, Clifford algebra and spinor-valued functions, Kluwer Academic Publishers, Dordrecht, 1992. MR 1169463 (94d:30084)
  • 7. C.F. Dunkl, Y. Xu, Orthogonal polynomials of several variables, Encyclopedia of Mathematics and its Applications 81, Cambridge University Press, Cambridge, 2001. MR 1827871 (2002m:33001)
  • 8. D. Eelbode, Stirling numbers and spin-Euler polynomials, Exp. Math. 16(1) (2007), 55-66. MR 2312977 (2008e:30060)
  • 9. N. Faustino, K. Gürlebeck, A. Hommel, U. Kähler, Difference potentials for the Navier-Stokes equations in unbounded domains, J. Diff. Eq. & Appl. 12(6) (2006), 577-595. MR 2240377 (2007g:76056)
  • 10. N. Faustino, U. Kähler, Fischer decomposition for difference Dirac operators, Adv. Appl. Cliff. Alg. 17(1) (2007), 37-58. MR 2303055 (2008a:30067)
  • 11. N. Faustino, U. Kähler, F. Sommen, Discrete Dirac operators in Clifford analysis, Adv. Appl. Cliff. Alg. 17(3) (2007), 451-467. MR 2350591 (2008i:30054)
  • 12. E. Forgy, U. Schreiber, Discrete differential geometry on causal graphs, preprint (2004), arXiv:math-ph/0407005v1.
  • 13. K. Gürlebeck, W. Sprößig, Quaternionic and Clifford Calculus for Engineers and Physicists, John Wiley & Sons, Chichester, 1997.
  • 14. K. Gürlebeck, A. Hommel, On finite difference potentials and their applications in a discrete function theory, Math. Meth. Appl. Sci. 25 (2002), 1563-1576. MR 1949515 (2004a:39037)
  • 15. K. Gürlebeck, A. Hommel, On finite difference Dirac operators and their fundamental solutions, Adv. Appl. Cliff. Alg. 11 (2001), 89-106. MR 2075345 (2005h:30092)
  • 16. I. Kanamori, N. Kawamoto, Dirac-Kähler fermion from Clifford product with noncommutative differential form on a lattice, Int. J. Mod. Phys. A19 (2004), 695-736. MR 2041732 (2005f:81118)
  • 17. H.R. Malonek, D. Peña Peña, F. Sommen, Fischer decomposition by inframonogenic functions, Cubo (to appear).
  • 18. B. Ørsted, P. Somberg, V. Souček, The Howe duality for the Dunkl version of the Dirac operator, Adv. Appl. Cliff. Alg. 19(2) (2009), 403-415. MR 2524678
  • 19. J. Vaz Jr., Clifford-like calculus over lattices, Adv. Appl. Cliff. Alg. 7(1) (1997), 37-70. MR 1472066 (99c:30077)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 39A12, 30G35, 39A70, 06D50

Retrieve articles in all journals with MSC (2010): 39A12, 30G35, 39A70, 06D50


Additional Information

Hilde De Ridder
Affiliation: Clifford Research Group, Department of Mathematical Analysis, Faculty of Engineering, Ghent University, Galglaan 2, 9000 Gent, Belgium
Email: hdr@cage.UGent.be

Hennie De Schepper
Affiliation: Clifford Research Group, Department of Mathematical Analysis, Faculty of Engineering, Ghent University, Galglaan 2, 9000 Gent, Belgium
Email: hds@cage.UGent.be

Uwe Kähler
Affiliation: Departamento de Matemática, Universidade de Aveiro, Aveiro, 3810-193 Centro, Portugal
Email: ukaehler@ua.pt

Frank Sommen
Affiliation: Clifford Research Group, Department of Mathematical Analysis, Faculty of Sciences, Ghent University, Galglaan 2, 9000 Gent, Belgium
Email: fs@cage.ugent.be

DOI: https://doi.org/10.1090/S0002-9939-2010-10480-X
Keywords: Discrete monogenic polynomial, Fischer decomposition
Received by editor(s): December 17, 2009
Published electronically: May 13, 2010
Communicated by: Michael T. Lacey
Article copyright: © Copyright 2010 American Mathematical Society

American Mathematical Society