Symmetry of bound and antibound states in the semiclassical limit for a general class of potentials

Authors:
Semyon Dyatlov and Subhroshekhar Ghosh

Journal:
Proc. Amer. Math. Soc. **138** (2010), 3203-3210

MSC (2010):
Primary 34L25; Secondary 65L15, 81U20

DOI:
https://doi.org/10.1090/S0002-9939-2010-10519-1

Published electronically:
May 14, 2010

MathSciNet review:
2653945

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the Schrödinger operator on a half-line, where is a compactly supported potential which is positive near the endpoint of its support. We prove that the eigenvalues and the purely imaginary resonances are symmetric up to an error .

**1.**A. A. Abramov, A. Aslanyan, and E. B. Davies,*Bounds on complex eigenvalues and resonances,*J. Phys. A.**34**(2001), 57-72. MR**1819914 (2002c:81225)****2.**D. Bindel,*MatScat: MATLAB Codes for 1D Potential Scattering,*`http://cims.nyu.edu/``~dbindel/matscat`.**3.**D. Bindel and M. Zworski,*Symmetry of bound and antibound states in the semiclassical limit,*Lett. Math. Phys.**81**(2007), 107-117. MR**2336226 (2008f:81274)****4.**P. Briet, J.-M. Combes, and P. Duclos,*On the location of resonances for Schrödinger operators in the semi-classical limit. II,*Comm. Partial Differential Equations**12**(1987), 201-222. MR**876987 (89e:81028b)****5.**R. Froese,*Asymptotic distribution of resonances in one dimension,*J. of Differential Equations**137**(2) (1997), 251-272. MR**1456597 (98f:81339)****6.**M. Hitrik,*Bounds on scattering poles in one dimension,*Comm. Math. Phys.**208**(1999), 381-411. MR**1729092 (2000m:34192)****7.**E. Korotyaev,*Inverse resonance scattering on the real line,*Inverse Problems**21**(2005), 325-341. MR**2146179 (2006a:34033)****8.**L. D. Landau and E. M. Lifshitz,*Quantum Mechanics: Non-Relativistic Theory,*Third Edition, Elsevier, 1977. MR**0093319 (19:1230k)****9.**L. Nedelec,*Asymptotics of resonances for a Schrödinger operator with matrix values,*math.SP/0509391.**10.**T. Regge,*Analytic properties of the scattering matrix,*Nuovo Cimento**10**(1958), 671-679. MR**0095702 (20:2203)****11.**B. Simon,*Resonances in one dimension and Fredholm determinants,*J. Funct. Anal.**178**(2000), 396-420. MR**1802901 (2001j:34031)****12.**S.-H. Tang and M. Zworski,*Potential Scattering on the Real Line,*lecture notes,`http:``//math.berkeley.edu/~zworski/tz1.pdf`.**13.**M. Zworski,*Distribution of poles for scattering on the real line,*J. Funct. Anal.**73**(1987), 277-296. MR**899652 (88h:81223)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2010):
34L25,
65L15,
81U20

Retrieve articles in all journals with MSC (2010): 34L25, 65L15, 81U20

Additional Information

**Semyon Dyatlov**

Affiliation:
Department of Mathematics, Evans Hall, University of California, Berkeley, California 94720

Email:
dyatlov@math.berkeley.edu

**Subhroshekhar Ghosh**

Affiliation:
Department of Mathematics, Evans Hall, University of California, Berkeley, California 94720

Email:
subhro@math.berkeley.edu

DOI:
https://doi.org/10.1090/S0002-9939-2010-10519-1

Received by editor(s):
December 2, 2009

Published electronically:
May 14, 2010

Communicated by:
Hart F. Smith

Article copyright:
© Copyright 2010
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.