FIXED POINTS AND PERIODIC POINTS
OF ORIENTATION-REVERSING PLANAR HOMEOMORPHISMS

J. P. BOROŃSKI

(Communicated by Bryna Kra)

Dedicated to the memory of Professor Andrzej Lasota (1932–2006)

ABSTRACT. Two results concerning orientation-reversing homeomorphisms of the plane are proved. Let \(h : \mathbb{R}^2 \to \mathbb{R}^2 \) be an orientation-reversing planar homeomorphism with a continuum \(X \) invariant (i.e. \(h(X) = X \)). First, suppose there are at least \(n \) bounded components of \(\mathbb{R}^2 \setminus X \) that are invariant under \(h \). Then there are at least \(n + 1 \) components of the fixed point set of \(h \) in \(X \). This provides an affirmative answer to a question posed by K. Kuperberg. Second, suppose there is a \(k \)-periodic orbit in \(X \) with \(k > 2 \). Then there is a 2-periodic orbit in \(X \), or there is a 2-periodic component of \(\mathbb{R}^2 \setminus X \). The second result is based on a recent result of M. Bonino concerning linked periodic orbits of orientation-reversing homeomorphisms of the 2-sphere \(S^2 \). These results generalize to orientation-reversing homeomorphisms of \(S^2 \).

1. INTRODUCTION

Let \(h : \mathbb{R}^2 \to \mathbb{R}^2 \) be an orientation-reversing homeomorphism of the plane onto itself with a continuum \(X \) invariant (i.e. \(h(X) = X \)). Suppose there are at least \(n \) bounded components of \(\mathbb{R}^2 \setminus X \) that are invariant under \(h \). In 1989 Krystyna Kuperberg \cite{10} asked whether \(h \) must always have \(n + 1 \) fixed points in \(X \). Earlier, in 1978, Harold Bell \cite{1} showed that this is true for \(n = 0 \). Kuperberg \cite{9} proved this result for \(n = 1 \). Subsequently, she also showed \cite{10} that \(h \) must have at least \(k + 2 \) fixed points in \(X \), whenever \(n \geq 2^k \). Drawing on ideas from \cite{9} and \cite{10} we will present an affirmative answer to the above question. More precisely, we will prove the following stronger result.

Theorem 1.1. Let \(h : \mathbb{R}^2 \to \mathbb{R}^2 \) be an orientation-reversing homeomorphism of the plane onto itself with a continuum \(X \) invariant, and suppose there are at least \(n \) bounded components of \(\mathbb{R}^2 \setminus X \) that are invariant under \(h \). Then \(\text{Fix}(X, h) \), the set of fixed points of \(h \) in \(X \), has at least \(n + 1 \) components.

In the present paper we also discuss another problem concerning periodic points of orientation-reversing homeomorphisms. Recently, Marc Bonino \cite{2} showed that if \(h : S^2 \to S^2 \) is an orientation-reversing homeomorphism of \(S^2 \) onto itself with an orbit \(O \) of period \(k > 2 \), then \(h \) must also have an orbit \(O' \) of period 2. Using

Received by the editors August 8, 2009 and, in revised form, December 31, 2009.
2010 Mathematics Subject Classification. Primary 55M20; Secondary 54F15, 54H25, 58C30.
Key words and phrases. Fixed point, periodic point, planar homeomorphism, continuum.
The author was supported in part by NSF Grant #DMS0634724.
Nielsen’s theory he strengthened his result in [3], showing that if \(h \) has a \(k \)-periodic orbit \(O \) with \(k > 2 \), then there is a 2-periodic orbit \(O' \) such that \(O \) and \(O' \) are linked. Two orbits \(O \) and \(O' \) are linked in the sense of Bonino if one cannot find a Jordan curve \(C \subseteq S^2 \) separating \(O \) and \(O' \) which is freely isotopic to \(h(C) \) in \(S^2 \setminus (O \cup O') \). \(C \) and \(h(C) \) are freely isotopic in \(S^2 \setminus (O \cup O') \) if there is an isotopy \(\{i_t : S^1 \to S^2 \setminus (O \cup O') : 0 \leq t \leq 1 \} \) from \(i_0(S^1) = C \) to \(i_1(S^1) = h(C) \); i.e. \(\{i_t(S^1)\} \) is a Jordan curve for any \(t \) (\(S^1 \) denotes the unit circle). Exploiting heavily results from the second paper we will show the following.

Theorem 1.2. Let \(h : \mathbb{R}^2 \to \mathbb{R}^2 \) be an orientation-reversing homeomorphism with a continuum \(X \) invariant (i.e. \(h(X) = X \)). Suppose \(h \) has a \(k \)-periodic orbit in \(X \) with \(k > 2 \).

(i) If \(X \) does not separate the plane, then \(h \) has a 2-periodic orbit in \(X \).

(ii) If \(X \) separates the plane, then \(h \) has a 2-periodic orbit in \(X \), or there is a 2-periodic component \(U \) of \(\mathbb{R}^2 \setminus X \).

The above result seems to be related to a special case of the Sarkovskii Theorem [11], which asserts that a self-map of the arc that has a point of period \(k > 2 \) must also have a point of period 2.

2. Preliminaries

Given a set \(D \), by \(\text{Int} \) \(D \) and \(\partial D \) we will denote respectively the interior and the boundary of \(D \). Throughout this paper \(h \) is an orientation-reversing homeomorphism of the plane \(\mathbb{R}^2 \) onto itself and \(X \) is a continuum (i.e. connected and compact subset of the plane) invariant under \(h \); that is, \(h(X) = X \). Denote by \(\text{Fix}(X, h) \) the set of fixed points of \(h \) in \(X \); i.e. \(\text{Fix}(X, h) = \{x \in X : h(x) = x \} \). Components of \(\mathbb{R}^2 \setminus X \) are called complementary domains of \(X \). A point \(x \) (a complementary domain \(U \) of \(X \)) is \(k \)-periodic if \(h^k(x) = x \) but \(h^p(x) \neq x \) \((h^k(U) = U \) but \(h^p(U) \neq U)\) for any positive integer \(p < k \). \(O \) is a \(k \)-periodic orbit if \(O = \{x, h^1(x), \ldots, h^{k-1}(x)\} \) for a \(k \)-periodic point \(x \). Let us recall the methods of [9] and [10] that we will rely on in order to prove Theorem [11]. Let \(U \) be a bounded complementary domain of \(\mathbb{R}^2 \setminus X \) that is invariant under \(h \). With modification of \(h \) outside of \(X \) one can ensure that there is an annulus \(\mathcal{A} \) invariant under \(h \) such that \(X \subseteq \mathcal{A} \). \(\mathcal{A} \) is topologically a geometric annulus \(\{(r, \theta) \in \mathbb{R}^2 : 1 \leq r \leq 2, 0 \leq \theta < 2\pi\} \), given in polar coordinates, with two boundary components \(\mathcal{A}^+ = \{(r, \theta) \in \mathbb{R}^2 : r = 2, 0 \leq \theta < 2\pi\} \) and \(\mathcal{A}^- = \{(r, \theta) \in \mathbb{R}^2 : r = 1, 0 \leq \theta < 2\pi\} \). The continuum \(X \) is essentially inscribed into \(\mathcal{A} \); i.e. \(\mathcal{A}^- \subseteq U \). Now, one can consider the universal covering space of \(\mathcal{A} \) given by \(\hat{\mathcal{A}} = \{(x, y) \in \mathbb{R}^2 : 1 \leq y \leq 2\} \), with the covering map \(\tau : \hat{\mathcal{A}} \to \mathcal{A} \) determined by \(\tau(x, y) = (y, 2\pi x (\text{mod} 2\pi)) \). Let \(\hat{h} : \hat{\mathcal{A}} \to \hat{\mathcal{A}} \) be a lift homeomorphism of \(h|_{\mathcal{A}} \) (i.e. \(\tau \circ h = \hat{h} \circ \tau \)). Note that for any \(p = (r, \theta) \in \mathcal{A} \) its fiber is the set \(\tau^{-1}(p) = \{(\frac{r}{2^p} + n, r) : n \in \mathbb{Z}\} \), and \(p \) is a fixed point of \(h \) iff \(\tau^{-1}(p) \) is invariant under \(\hat{h} \). The main ingredients from [9] and [10] that we will need are the following facts.

1. Given a fixed point \(p = (r, \theta) \in \mathcal{A} \) and a lift \(\hat{h} \) of \(h \) there is an integer \(m[\hat{h}, p] \) such that \(\hat{h}(\frac{r}{2^m} + n, r) = (\frac{r}{2^m} - n + m[\hat{h}, p], r) \) for every \((\frac{r}{2^m} + n, r) \in \tau^{-1}(p) \).
2. \(\hat{h} \) has a fixed point in \(\tau^{-1}(p) \) iff \(m[\hat{h}, p] \) is even.
3. If \(m[\hat{h}, p] \) is even, then \(\hat{h}(x + 1, y) \) is a lift homeomorphism of \(h \) that does not have a fixed point in \(\tau^{-1}(p) \).
(4) \(\tilde{\mathcal{A}} \) can be compactified by two points, say \(b_1, b_2 \), so that \(\tilde{X} = \tau^{-1}(X) \cup \{b_1, b_2\} \) is a continuum invariant under \(\tilde{h} \), and the latter can be extended to an orientation-reversing homeomorphism of the entire plane onto itself.

Let \(\hat{h}_1 : \hat{\mathcal{A}} \to \hat{\mathcal{A}} \) be a lift of \(h \) and \(\hat{h}_2(x, y) = \hat{h}_1(x + 1, y) \) be another lift, fixed once and for all. For simplicity we will use the same symbols \(\hat{h}_1, \hat{h}_2 \) to denote the extensions of these two lifts to the entire plane.

Proposition 2.1. If \(Y \) is a subcontinuum of the set of fixed points of \(h \), then \(Y \) does not separate the plane.

Proof. If \(F \) is the fixed point set of a homeomorphism \(f \) of a connected topological manifold \(M \), then either each component of \(M \setminus F \) is invariant under \(f \) or there are exactly two components of \(M \setminus F \) and \(f \) interchanges them \([6]\). Since in the case of planar homeomorphisms the unbounded complementary domain of \(F \) is always invariant under \(h \), therefore the above implies that all components of \(\mathbb{R}^2 \setminus F \) must be invariant under \(h \). Consequently if \(Y \) were a continuum of fixed points of \(h \) separating the plane, then \(Y \) could be essentially inscribed into the annulus \(\mathcal{A} \) with \(\mathcal{A}^- \) and \(\mathcal{A}^+ \) invariant under \(h \), and \(h \) would induce the identity on the homology group \(H_1(\mathcal{A}, \mathbb{Z}) \). Therefore any lift \(\hat{h} \) of \(h \) to the universal cover \(\hat{\mathcal{A}} \) would preserve the orientation on the two boundary components of \(\hat{\mathcal{A}} \), at the same time keeping them invariant. Consequently \(\hat{h} \) would be orientation-preserving on \(\hat{\mathcal{A}} \), contradicting the fact that any lift of \(h \) to \(\hat{\mathcal{A}} \) must be orientation-reversing. \(\square \)

Lemma 2.2. Suppose \(p \) is a fixed point of \(h \) and let \(Y \) be the component of \(p \) in \(\text{Fix}(X, h) \). Then
\[
m[\hat{h}_1, p] = m[\hat{h}_1, q](\text{mod} 2)
\]
for every \(q \in Y \).

Proof. First, \(Y \) does not separate the plane. Suppose \(m[\hat{h}_1, p] \) is even. Let \(\alpha \) be the fixed point of \(\hat{h}_1 \) in \(\tau^{-1}(p) \) and let \(K \) be the component of \(\tau^{-1}(Y) \) containing \(\alpha \). To the contrary, suppose the above claim is false and let \(q \in Y \) be such that \(m[\hat{h}_1, q] \) is odd. For every \(\beta \in \tau^{-1}(q) \) we have \(\beta \neq \hat{h}_1(\beta) \). Let \(\gamma \) be in \(K \cap \tau^{-1}(q) \). Then \(\hat{h}_1(\gamma) \neq \gamma \) and \(\hat{h}_1(\gamma) \in \hat{h}_1(K) \). Since \(\hat{h}_1(K) \) is also a component of \(\tau^{-1}(Y) \) and \(\alpha \in \hat{h}_1(K) \), then \(K = \hat{h}_1(K) \). Consequently, \(K \) contains two elements from the same fiber \(\tau^{-1}(q) \in \tau^{-1}(Y) \). But this contradicts the following observation indicated in \([5]\), which in turn will complete the proof.

Since \(Y \subseteq \mathcal{A} \) does not separate the plane, one can choose a disk \(D \subseteq \mathcal{A} \) around \(Y \); i.e., \(Y \subseteq \text{Int} D \), and \(\text{Int} D \) being simply connected lifts to disjoint homeomorphic copies of \(\text{Int} D \) in \(\hat{\mathcal{A}} \). Consequently \(Y \) lifts to disjoint homeomorphic copies in \(\hat{\mathcal{A}} \). Since \(K \) is one of them, it cannot contain two points from the same fiber \(\tau^{-1}(q) \). \(\square \)

As a consequence of the above, for a given component \(Y \) of \(\text{Fix}(X, h) \) one can choose any \(p \in Y \) and say that \(m[\hat{h}_1, Y] \) is even (or odd) if \(m[\hat{h}_1, p] \) is of the same parity.

3. **Proof of Theorem [11]**

Proof of Theorem [11]. We will prove this theorem by induction. First, observe that the case when \(n = 0 \) is the theorem of Bell [1]. Indeed, if \(X \) is a nonseparating plane continuum, then by Bell’s theorem \(h \) must have a fixed point in \(X \), and therefore there is at least one component of \(\text{Fix}(X, h) \).
For the sake of induction suppose the theorem is true for \(n = k - 1 \). Now we will show that the theorem holds true for \(n = k \).

Assume \(U_1, \ldots, U_k \) are bounded complementary domains of \(X \) invariant under \(h \) and that \(h_i \) is inserted into \(U_i \). We may assume that there is a fixed point \(u_i \) of \(h \) in each \(U_i \). Without loss of generality assume that \(u_1, \ldots, u_p \) are all fixed points of \(h \) such that there is a fixed point of \(h_1 \) in the fiber \(\tau^{-1}(u_1) \), for all \(i = 1, \ldots, p \). In other words, each set from \(U_1, \ldots, U_p \) contains in its lift \(\tau^{-1}(U_i) \) a bounded complementary domain of \(X \) that is invariant under \(h_1 \). Equivalently, \(m[h_1, u_i] \) is even for \(i = 1, \ldots, p \) and \(m[h_1, u_i] \) is odd for \(i = p + 1, \ldots, k - 1 \).

Let \(q = k - 1 - p \). Note that \(p, q \) are nonnegative integers (possibly with \(p \) or \(q \) equal to 0). Since \(X \) is a continuum with \(p \) bounded complementary domains invariant under \(h_1 \) and \(p \leq k - 1 \), by the induction hypothesis there are \(p + 1 \) components of \(\text{Fix}(h_1, X) \). Let \(A_1, \ldots, A_{p+1} \) be those components.

For every \(i = 1, \ldots, p + 1 \) there is a component \(X_i \) of \(\text{Fix}(h, X) \) such that \(X_i = \tau(A_i) \). Note that \(\tau(A_i) \) and \(\tau(A_t) \) are disjoint for \(i \neq t \) since any fiber of a fixed point of \(h \) contains no more than one fixed point of \(h_1 \). Therefore \(\{X_i : i = 1, \ldots, p + 1\} \) consists of \(p + 1 \) distinct components of \(\text{Fix}(X, h) \).

Now, \(\tau^{-1}(X_i) \) is invariant under \(h_1 \), and \(m[h_1, X_i] \) is even for every \(i = 1, \ldots, p + 1 \). \(\tau^{-1}(X_i) \) is also invariant under \(h_2 \) but contains no fixed point of \(h_2 \), since \(m[h_2, X_i] \) is odd for every \(i = 1, \ldots, p + 1 \). For \(i = 1, \ldots, p \), no \(\tau^{-1}(u_i) \) contains a fixed point of \(h_2 \), since \(m[h_2, u_i] \) is odd. For \(i = p + 1, \ldots, k - 1 \), every \(\tau^{-1}(u_i) \) contains a fixed point of \(h_2 \), since \(m[h_2, u_i] \) is even. Therefore, there are \(q = (k - 1) - p \) bounded complementary domains of \(X \) that are invariant under \(h_2 \). Again, by the induction hypothesis, there must be \(q + 1 \) components of \(\text{Fix}(h_2, X) \). Denote them by \(C_1, \ldots, C_q \). For every \(j = 1, \ldots, q + 1 \), \(\tau(C_j) \) is a component of \(\text{Fix}(h, X) \). Note that \(\tau(C_j) \) and \(\tau(C_t) \) are disjoint for \(j \neq t \) since any fiber of a fixed point of \(h \) contains no more than one fixed point of \(h_2 \). Therefore \(\{\tau(C_j) : j = 1, \ldots, q + 1\} \) consists of \(q + 1 \) distinct components of \(\text{Fix}(X, h) \). Since each \(\tau^{-1}(X_i) \) contains no fixed point of \(h_2 \), no \(\tau(C_j) \) can coincide with any \(X_i \). Therefore there are \(p + 1 + q + 1 = k + 1 \) components of \(\text{Fix}(h, X) \). This completes the proof. \(\square \)

Note that Theorem 3.1 generalizes to orientation-reversing homeomorphisms of \(S^2 \). More precisely, we get the following as a corollary.

Theorem 3.1. Let \(g : S^2 \to S^2 \) be an orientation-reversing homeomorphism of \(S^2 \) onto itself with a continuum \(X \) invariant, and suppose there are at least \(n \) components of \(S^2 \setminus X \) that are invariant under \(g \). Then \(\text{Fix}(X, g) \) has at least \(n \) components.

Proof. First suppose that \(S^2 \setminus X \) has exactly one component \(U \) invariant under \(g \). We can assume that there is a fixed point \(u \) of \(g \) in \(U \). Notice that \(S^2 \setminus \{u\} \) is topologically the plane, and \(G = g(S^2 \setminus \{u\}) \), obtained by the restriction of \(g \) to \(S^2 \setminus \{u\} \), is an orientation-reversing homeomorphism of the plane onto itself with the continuum \(X \) invariant. Now, since \(X \) has no bounded complementary domains invariant under \(G \), by a theorem of Bell there is at least one component of \(\text{Fix}(X, G) = \text{Fix}(X, g) \). Bell’s theorem applies to nonseparating plane continua, but in the above case if \(X \) separates the plane and none of the bounded complementary domains is invariant under \(G \), then these domains can be added to \(X \) to form a nonseparating plane continuum \(Y \) with \(\text{Fix}(X, G) = \text{Fix}(Y, G) \).
Second, suppose that $\mathbb{S}^2 \setminus X$ has at least two components U_1 and U_2 invariant under g. Then there is an annulus A such that $X \subseteq A$, $A^- \subseteq U_1$ and $A^+ \subseteq U_2$. Since U_1 and U_2 are invariant under g, then h does not interchange A^- and A^+, and one can repeat the proof of Theorem 1.1.

\[\square\]

4. Proof of Theorem 1.2

Theorem 1.2 seems to fit well in the following context. The Cartwright-Littlewood-Bell theorem (see [7] and [1]) states that any planar homeomorphism fixes a point in an invariant nonseparating continuum. Morton Brown [5] and O.H. Hamilton [5] exhibited that, in the case of orientation-preserving homeomorphisms, this theorem can be deduced directly from a theorem of Brouwer [4]. Brouwer showed that any orientation-preserving homeomorphism with at least one bounded orbit must have a fixed point. Briefly, the idea behind these short proofs of the fixed point theorem was to separate the invariant continuum from the fixed-point set, and then for an open invariant component U in $\mathbb{R}^2 \setminus F$ containing X argue that U contains no fixed point, thus contradicting the theorem of Brouwer. The inspiration for the proof of Theorem 1.2 comes from these very papers, but since the set of 2-periodic points does not need to be closed (in contrast with the fixed-point set), one cannot just replace the theorem of Brouwer with a theorem of Bonino from [2] and use the same arguments. Instead, we will use Bonino’s result from [3] and show that no 2-periodic orbit in an invariant component of $\mathbb{R}^2 \setminus X$ can be linked to a k-periodic ($k > 2$) orbit in X.

\textbf{Proof of Theorem 1.2.} Compactify \mathbb{R}^2 by a point ∞ to obtain $\mathbb{S}^2 = \mathbb{R}^2 \cup \{\infty\}$ and extend the given homeomorphism $h : \mathbb{R}^2 \to \mathbb{R}^2$ to a homeomorphism $\tilde{h} : \mathbb{S}^2 \to \mathbb{S}^2$ by setting $\tilde{h}|_{\mathbb{R}^2} = h$ and $\tilde{h}(\infty) = \infty$. h and \tilde{h} have exactly the same k-periodic points for any $k > 1$.

By Bonino’s result there is an orbit $O' \subseteq \mathbb{S}^2$ of \tilde{h} of period exactly 2. We will show that any such 2-periodic orbit that lies in an invariant complementary domain of X is not linked to O.

Suppose $O' \cap X = \emptyset$ and $O' \subseteq U$ for a complementary domain U of X invariant under h. Since O' and X are closed, there is a Jordan curve $S \subseteq \mathbb{S}^2$ separating O' from X. Let D be one of the two disks in \mathbb{S}^2 bounded by S, such that $X \subseteq \text{Int} D$. Then $D \cap O' = \emptyset$. Since X is invariant under \tilde{h}, by continuity of \tilde{h}, there is a disk C such that $C \subseteq \text{Int} D$ and $\tilde{h}(C) \subseteq \text{Int} D$. Since both C and $\tilde{h}(C)$ contain X in its interior, there is a disk $B \subseteq C \cap \tilde{h}(C)$ that contains X in its interior. Therefore C and $\tilde{h}(C)$ are freely isotopic in the annulus $D \setminus \text{Int} B$, thus freely isotopic in $\mathbb{S}^2 \setminus (O \cup O')$. This shows that if $O' \subseteq \mathbb{S}^2 \setminus X$ is a 2-periodic orbit, then O' and O are not linked. Therefore the 2-periodic orbit O' linked to O, guaranteed by a theorem of Bonino in [3], must be in X or in a 2-periodic component of $\mathbb{S}^2 \setminus X$.

\[\square\]

\textbf{Corollary 4.1.} Suppose there is a k-periodic component of $\mathbb{R}^2 \setminus X$, for $k > 2$. Then either there is a 2-periodic orbit in X or there is a 2-periodic component of $\mathbb{R}^2 \setminus X$.

\textbf{Proof.} Let W be a k-periodic complementary domain of X ($k > 2$). Without loss of generality one may assume that there is a k-periodic point w in W (w is a fixed point of h^k). Consider $Y = X \cup W \cup h(W) \cup \ldots \cup h^{k-1}(W)$. Clearly Y is a continuum invariant under h. Now apply Theorem 1.2.

\[\square\]
Remark. It is clear from the proof of Theorem 1.2 that this theorem holds also for any orientation-reversing homeomorphism of S^2. On the other hand, it is not apparent to the present author if one can improve Theorem 1.2 and get rid of the 2-periodic component of $\mathbb{R}^2 \setminus X$ to guarantee that, under the assumptions, there will be a 2-periodic point in X. Nonetheless, the following example shows that one cannot do it for S^2.

Example. Let S^2 be given in spherical coordinates by $S^2 = \{(r,\theta,\phi) : r = 1, 0 \leq \theta < 2\pi, 0 \leq \phi \leq \pi\}$. Consider the Jordan curve $S \subseteq S^2$ determined by $S = \{(r,\theta,\phi) : r = 1, \phi = \frac{\pi}{2}\}$. Let U^+, U^- be the two disks in $S^2 \setminus S$ bounded by S. Fix $k > 2$ and consider the orientation-reversing homeomorphism $g : S^2 \to S^2$ determined by

$$g(r,\theta,\phi) = (r,\theta + \frac{2\pi}{k}, \pi - \phi).$$

g interchanges U^+ and U^-, reflecting S^2 about S and then rotating S^2 by $\frac{2\pi}{k}$. Notice that $g^2(r,\theta,\phi) = (r,\theta + \frac{2\pi}{k}, \phi)$ and $g^k(r,\theta,\phi) = (r,\theta,\phi) = \text{id}_{S^2}(r,\theta,\phi)$. Clearly, g is an orientation-reversing homeomorphism of S^2 with the continuum S invariant, and any point in S is of period exactly k, but the only points of period 2 are the two poles, which are not in S.

ACKNOWLEDGMENT

The author is indebted to his Ph.D. advisor, Professor Krystyna Kuperberg, for bringing the question from [10] to his attention, for a patient reading of several preliminary notes on a solution of the problem, and for many valuable comments.

REFERENCES

DEPARTMENT OF MATHEMATICS AND STATISTICS, AUBURN UNIVERSITY, AUBURN, ALABAMA 36849

E-mail address: boronjp@auburn.edu