REGULARITY OF GEODESIC RAYS
AND MONGE-AMPÈRE EQUATIONS

D. H. PHONG AND JACOB STURM

(Communicated by Richard A. Wentworth)

ABSTRACT. It is shown that the geodesic rays constructed as limits of Bergman geodesics from a test configuration are always of class $C^{1,\alpha}$, $0 < \alpha < 1$. An essential step is to establish that the rays can be extended as solutions of a Dirichlet problem for a Monge-Ampère equation on a Kähler manifold which is compact.

1. Introduction

The purpose of this paper is to establish the $C^{1,\alpha}$ regularity, $0 < \alpha < 1$, of the geodesic rays constructed in [PS07] from a test configuration by Bergman geodesic approximations. With the notation given in section 2 below, our main result can be stated as follows:

Theorem 1.1. Let $L \to X$ be a positive holomorphic line bundle over a compact complex manifold X of dimension n. Let ρ be a test configuration for the polarization (X, L). Let $D^\times = \{0 < |w| \leq 1\}$ be the punctured unit disk, and let π_X be the natural projection $X \times D^\times \to X$. For each metric h_0 on L with positive curvature $\omega_0 \equiv -\frac{i}{2} \partial \bar{\partial} \log h_0 > 0$, let $\Phi(z, w)$ be the $\pi_X^*(\omega_0)$-plurisubharmonic function on $X \times D^\times$ defined by

\begin{equation}
\Phi(z, w) = \lim_{k \to \infty} \left[\sup_{\ell \geq k} \Phi_\ell(z, w) \right]^*, \quad (z, w) \in X \times D^\times,
\end{equation}

where $\Phi_\ell(z, w)$ are the functions defined by (2.10) below. Then for any $0 < \alpha < 1$, $\Phi(z, w)$ is a $C^{1,\alpha}$ generalized solution of the Dirichlet problem

\begin{equation}
(\pi_X^*(\omega_0) + \frac{i}{2} \partial \bar{\partial} \Phi)^n + 1 = 0 \text{ on } X \times D^\times, \quad \Phi(z, w) = 0 \text{ when } |w| = 1.
\end{equation}

The fact that $\Phi(z, w)$ is locally bounded and a solution of the Dirichlet problem was established in [PS07], so the new part of the theorem is the $C^{1,\alpha}$ regularity. In the case of toric varieties, the $C^{1,\alpha}$ regularity of geodesic rays was previously established by Song and Zelditch [SZ08], using an explicit analysis of orthonormal bases for $H^0(X, L^k)$ and the theory of large deviations. They also pointed out that, already for toric varieties, geodesic rays from test configurations can be at best $C^{1,1}$.

The interpretation of the completely degenerate Monge-Ampère equation in (1.2)
as the equation for geodesics in the space of Kähler potentials of class $c_1(L)$ on X is well-known and due to Donaldson [D99], Semmes [S], and Mabuchi [M].

In [PS09], $C^{1,\alpha}$ geodesic rays were constructed in all generality from test configurations by a different approach, namely viscosity methods for the degenerate complex Monge-Ampère equation on a compactification \tilde{X}_D of $X \times D^\times$. Thus our theorem can be established by showing that the above solution, more precisely $\Phi(z, w) - \Phi_1(z, w)$, can also be extended to \tilde{X}_D and that such solutions must be unique. For this, it is essential to show that $\Phi(z, w) - \Phi_1(z, w)$ is uniformly bounded on $X \times D^\times$. We accomplish that with the help of a “lower-triangular” property of Donaldson’s equivariant imbeddings, relating k-th powers of sections of $H^0(X, L)$ to sections of $H^0(X, L^k)$, which may be of independent interest (see Lemma 2.2 below).

The uniqueness follows from a comparison theorem for Monge-Ampère equations on Kähler manifolds with boundary, using the approximation theorems for plurisubharmonic functions obtained recently by Blocki and Kolodziej [BK] (see also Demailly and Paun [DP] for other approximation theorems). It is well-known that such approximation theorems would imply comparison theorems by a straightforward adaptation to Kähler manifolds of the classic comparison theorem of Bedford and Taylor [RT82] for domains in \mathbb{C}^m.

The proof of Theorem 1.1 also shows that the function $\Phi_\ell - \Phi_1$ extends for all ℓ to a smooth function on X_{red}, the variety underlying the test configuration X. Thus its limsup envelope $\Phi - \Phi_1$ is an upper semi-continuous function on X_{red} whose restriction to the central fiber of X_{red} is a well-defined bounded upper semi-continuous function.

As has been stressed in [PS06], each test configuration defines a generalized vector field on the space of Kähler potentials, with the vector at each potential h_0 given by the tangent vector $\dot{\phi}$ to the geodesic at the initial time. This observation can now be given a precise formulation using the measures recently introduced by Berndtsson [B09a]: for each generalized $C^{1,\alpha}$ geodesic $(-\infty, 0] \to \phi(z, t) \equiv \Phi(z, e^t)$, the functional $\mu_\Phi : C^0_0(\mathbb{R}) \ni f \to \int_X f(\phi) \omega^n_{\phi(t)}$ defines a Borel measure on \mathbb{R} which is independent of t. Taking $t = 0$, we can think of this measure as a way of characterizing $\dot{\phi}(0)$ by its moments. If Φ is the geodesic constructed in Theorem 1.1, the corresponding assignment $h_0 \to \mu_\Phi$ can be viewed as a precise realization of the generalized vector field defined by the test configuration ρ.

We note that Theorem 1.1 gives the regularity of the limiting function $\Phi(z, w)$, but it does not provide information on the precise rate of convergence of Φ_k. For toric varieties, very precise rates of convergence have been provided by Song and Zelditch [SZ06, SZ08]. For general manifolds, in the case of geodesic segments, the precise rate of C^0 convergence was obtained a few years ago by Berndtsson [B09a] with an additional twisting by $1/2 K_X$ and very recently in [B09b] for the Φ_k themselves.

Finally, we would like to mention that geodesics have been constructed by Arezzo and Tian [AT], Chen [C00, C08], Chen and Tang [CT], Chen and Sun [CS], Blocki [B09] and others in various geometric situations. For geodesic segments, the $C^{1,\alpha}$ regularity has been established by Chen [C00]. Their construction by Bergman approximations is in [PS06]. This construction has also been extended by Rubinstein and Zelditch [RZ] to the construction of harmonic maps in the space of Kähler potentials in the case of toric varieties.
2. The extension to a compact Kähler manifold

In this section, we show how the generalized geodesic rays constructed in [PS07], originally defined on $X \times \{0 < |w| \leq 1\}$, actually extend as bounded solutions of a complex Monge-Ampère equation over a compact Kähler manifold $\tilde{X}_D \supset X \times \{0 < |w| \leq 1\}$. We begin by introducing the notation and recalling the results of [PS07].

2.1. Test configurations. Let $L \to X$ be a positive line bundle over a compact complex manifold X of dimension n. A test configuration ρ for $L \to X$ [D02] is a homomorphism $\rho : \mathbb{C}^\times \to \text{Aut}(\mathcal{L} \to \mathcal{X} \to \mathbb{C})$, where \mathcal{L} is a \mathbb{C}^\times equivariant line bundle with ample fibers over a scheme \mathcal{X}, and $\pi : \mathcal{X} \to \mathbb{C}$ is a flat \mathbb{C}^\times equivariant map of schemes, with $(\pi^{-1}(1), \mathcal{L}_{|_{\pi^{-1}(1)}})$ isomorphic to (X, L^r) for some fixed $r > 0$.

Replacing L by L^r, we may assume that $r = 1$.

It is convenient to denote $(\pi^{-1}(w), \mathcal{L}_{|_{\pi^{-1}(w)}})$ by (X_w, L_w). In particular, for each $\tau \neq 0$, $\rho(\tau)$ is an isomorphism between (X_w, L_w) and $(X_{\tau w}, L_{\tau w})$.

The central fiber (X_0, L_0) is fixed under the action of ρ. Thus, for each k, ρ induces a one-parameter subgroup of automorphisms $\rho_k(\tau) : H^0(X_0, L_0^k) \to H^0(X_0, L_0^k), \quad \tau \in \mathbb{C}^\times$.

Since $\rho_k(\tau)$ is an algebraic one-parameter subgroup, there is a basis of $H^0(X_0, L_0^k)$ in which $\rho(\tau)$ is represented by a diagonal matrix with entries $\tau^{\eta_{\alpha}^{(k)}}$, where $\eta_{\alpha}^{(k)}$ are integers, $0 \leq \alpha \leq N_k \equiv \dim H^0(X_0, L_0^k) - 1$. Set

$$\lambda_{\alpha}^{(k)} = \eta_{\alpha}^{(k)} - \frac{1}{N_k + 1} \sum_{\beta=0}^{N_k} \eta_{\beta}^{(k)},$$

so that $(\lambda_{\alpha}^{(k)})$ is the traceless component of $(\eta_{\alpha}^{(k)})$.

For a fixed k, we shall refer to $\eta_{\alpha}^{(k)}$ and $\lambda_{\alpha}^{(k)}$ respectively as the weights and the traceless weights of the test configuration ρ.

It is convenient to introduce an $(N_k + 1) \times (N_k + 1)$ diagonal matrix B_k whose diagonal entries are given by the weights $\eta_{\alpha}^{(k)}$. Such a matrix is determined up to a permutation of the diagonal entries $\eta_{\alpha}^{(k)}$, and we fix one choice once and for all.

Then the traceless weights $\lambda_{\alpha}^{(k)}$ are the diagonal entries of the matrix A_k defined by $A_k = B_k - (N_k + 1)^{-1}(\text{Tr} B_k)I$, and

$$\text{Tr} B_k = \sum_{\alpha=0}^{N_k} \eta_{\alpha}^{(k)}, \quad \text{Tr} A_k = 0.$$

For sufficiently large k, the functions $k(N_k + 1)$ and $\text{Tr} B_k$ are polynomials in k of degree $n + 1$, so we have an asymptotic expansion

$$\frac{\text{Tr} B_k}{k(N_k + 1)} \equiv F_0 + F_1 k^{-1} + F_2 k^{-2} + \cdots.$$

The Donaldson-Futaki invariant of ρ is defined to be the coefficient F_1.

2.2. Equivariant imbeddings of test configurations. An essential property of test configurations, due to Donaldson [D05], is that the entire configuration can be imbedded equivariantly in $\mathbb{C}P^{N_k} \times \mathbb{C}$ in a way which respects a given L^2 metric on $H^0(X, L^k)$. The following formulation [PS07, Lemmas 2.1-2.3] is most convenient for our purposes.
Let $g(k) = \{ s^{(k)}_\alpha(z) \}_{\alpha=0}^{N_k}$ be a basis for $H^0(X, L^k)$. For all k sufficiently large, it
defines a Kodaira imbedding
\begin{equation}
\iota_{g(k)} : X \ni z \rightarrow [s^{(k)}_0(z) : s^{(k)}_1(z) : \cdots : s^{(k)}_{N_k}(z)] \in \mathbb{CP}^{N_k}
\end{equation}
of X into \mathbb{CP}^{N_k}, with $O(1)$ pulled back to L^k. If h_0 is a fixed metric on L with
$\omega_0 \equiv -\frac{i}{2} \partial \bar{\partial} \log h_0 > 0$, then $H^0(X, L^k)$ can be equipped with the L^2 metric defined
by the metric h^0_0 on sections of L^k and the volume form $\omega^k_0/n!$. For simplicity, we
shall refer to this L^2 metric on $H^0(X, L^k)$ as just the “L^2 metric defined by h_0”. Of particular
importance then are the bases $g(k)$ which are orthonormal with respect to this L^2 metric.

Lemma 2.1. Let $\rho : \mathbb{C}^\times \rightarrow \text{Aut}(\mathcal{L} \rightarrow \mathcal{X} \rightarrow \mathbb{C})$ be a test configuration, and fix
a diagonal matrix B_k with the weights of ρ as diagonal entries as defined in §2.1. Fix a metric h_0 on L with positive curvature ω_0 and a corresponding L^2 metric on
$H^0(X, L^k)$. Then there is an orthonormal basis $\tilde{g}(k)$ of $H^0(X, L^k) = H^0(X_1, L^k_1)$
with respect to the L^2 metric defined by h_0 and an imbedding
\begin{equation}
I_{\tilde{g}(k)} : (\mathcal{L} \rightarrow \mathcal{X} \rightarrow \mathbb{C}) \rightarrow (O(1) \times \mathbb{C} \rightarrow \mathbb{CP}^{N_k} \times \mathbb{C} \rightarrow \mathbb{C})
\end{equation}
satisfying
1. $I_{\tilde{g}(k)}|_X = \iota_{g(k)}$;
2. $I_{\tilde{g}(k)}$ intertwines $\rho(\tau)$ and B_k,
\begin{equation}
I_{\tilde{g}(k)}(\rho(\tau) \ell_w) = (\tau^{B_k} I_{\tilde{g}(k)}(\ell_w), \tau \ell_w), \quad \ell_w \in L_w, \quad \tau \in \mathbb{C}^\times.
\end{equation}

Let $E_k = \pi_0(\mathcal{L}^k)$ be the direct images of the bundles \mathcal{L}^k. Thus $E_k \rightarrow \mathbb{C}$ is a
vector bundle over \mathbb{C} of rank $N_k + 1$, and its sections $S(w)$ are holomorphic sections
of L_w for each $w \in \mathbb{C}$. The action of \mathbb{C}^\times on the sections S is given by
\begin{equation}
S^\tau(w) = \rho(\tau)^{-1} S(w \tau).
\end{equation}

Then a third key statement in the equivariant imbedding lemma is:
\begin{enumerate}
\item[(3)] The functions $S_\alpha(w) \equiv w^{\rho_0(\alpha)} \rho(w) s_\alpha, \ w \in \mathbb{C}^\times$, extend to a basis for the free
$\mathbb{C}[w]$ module of all sections of $E_k \rightarrow \mathbb{C}$ and they have the property $S_\alpha(1) = s_\alpha$. This
extension still satisfies the relation
\begin{equation}
\rho(\tau)^{-1} S_\alpha(w) = \tau^{\rho_0(\alpha)} S_\alpha(w), \quad w \in \mathbb{C}.
\end{equation}

In the language of [PS07], the Hermitian generator Θ of the test configuration
is the isomorphism $H^0(X_0, L^k_0) \rightarrow H^0(X_1, L^k_1)$ sending the basis $S_\alpha(0)$ to the basis $S_\alpha(1)$.

2.3. The construction of geodesics.

We come now to the construction of geodesics by Bergman approximations. Let $\rho : \mathbb{C}^\times \rightarrow \text{Aut}(\mathcal{L} \rightarrow \mathcal{X} \rightarrow \mathbb{C})$ be a
test configuration for $L \rightarrow X$, and fix a metric h_0 on L with positive curvature ω_0.
Let $g(k) = \{ s^{(k)}_\alpha(z) \}$ be an orthonormal basis for $H^0(X, L^k)$ with respect to the L^2
metric defined by h_0 as in Lemma 2.1. Let $D^\times = \{ w \in \mathbb{C}; 0 < |w| \leq 1 \}$ be the
punctured disk. Define the functions $\Phi_k : X \times D^\times \rightarrow \mathbb{R}$ by
\begin{equation}
\Phi_k(z, w) = \frac{1}{k} \log \sum_{\alpha=0}^{N_k} |w|^{2n(\alpha)} |s^{(k)}_\alpha(z)|^2 h_0 - \frac{n}{k} \log k
\end{equation}
and $\Phi(z, w)$ by
\begin{equation}
\Phi(z, w) = \lim_{k \to \infty} [\text{sup}_{|z| \leq k} \Phi_k(z, w)]^*
\end{equation}
where \(\eta^{(k)}_\alpha \) are the weights of the test configuration \(\rho \), \(\ast \) denotes the upper semi-continuous envelope, i.e.

\[
f^\ast(z) = \lim_{\epsilon \to 0} \sup_{|w-z|<\epsilon} f(w),
\]

and \(|s^\alpha(z)|^2_{h^0} \equiv s^\alpha(z)s^\alpha(z)h_0(z)^k \) denotes the norm-squared of \(s^\alpha(z) \) with respect to the metric \(h^0 \). Then it is shown in [PS07] that \(\Phi(z, w) \) is a generalized geodesic ray in the sense that

(a) \(\pi^X_N(\omega_0) + \frac{i}{2} \partial \bar{\partial} \Phi \geq 0 \) on \(X \times D^\infty \), where \(\pi^X \) is the projection \(X \times D^\infty \to X \);

(b) for each finite \(T > 0 \), we have

\[
(2.13) \quad \sup_k |\Phi_k(z, w)|, |\Phi(z, w)| \leq C_T \text{ for } (z, w) \in X \times \{e^{-T} < |w| \leq 1\}
\]

with \(C_T \) a constant independent of \(z, w \) and \(k \), but possibly depending on \(T \);

(c) \(\Phi(z, w) \) is continuous when \(|w| = 1 \) and is a solution in the sense of pluripotential theory of the following Dirichlet problem:

\[
(2.14) \quad (\pi^X_N(\omega_0) + \frac{i}{2} \partial \bar{\partial} \Phi)^{n+1} = 0 \text{ on } X \times D^\infty; \quad \Phi(z, w) = 0 \text{ when } |w| = 1.
\]

The geodesic \(\Phi(z, w) \) is non-constant if the test configuration is non-trivial, that is, not holomorphically equivalent to a product test configuration. We note that in the boundary value problem \((2.14) \), the behavior of \(\Phi(z, w) \) near \(w = 0 \) is not specifically assigned.

2.4. Formulation in terms of equivariant imbeddings

We come now to the main task in this chapter, which is to identify the solution \((2.14) \) with the restriction to \(X \times D^\infty \) of the solution of a standard Dirichlet problem on a compact Kähler manifold \(X_D \) with boundary.

Let \(\pi_{\text{red}} : X_{\text{red}} \to \mathbb{C} \) be the projection map, and let \(D = \{ w \in \mathbb{C} : |w| \leq 1 \} \). Here \(X_{\text{red}} \) is the variety underlying the scheme \(X \). Let \(X_D = \pi^{-1}_{\text{red}}(D), \quad X^\infty_D = \pi^{-1}_{\text{red}}(D^\infty) \).

The space \(X^\infty_D \) is isomorphic to \(X \times D^\infty \) under the correspondence

\[
(2.15) \quad X \times D^\infty \ni (z, w) \to \rho(w)(z) \in X_w,
\]

where \(z \in X \) is viewed as a point in \(X_1 \). This correspondence lifts to a correspondence between \(L \times D^\infty \) and the restriction \(L^\infty_D \) of \(L \) over \(X^\infty_D \).

Let \(p : \tilde{X} \to X_{\text{red}} \to \mathbb{C} \) be an \(SL^1 \) equivariant smooth resolution and \(\tilde{\mathcal{L}} = p^* \mathcal{L} \). The first step is to show that the functions \(\Phi_k(z, w) - \Phi_1(z, w) \) of \((2.10) \), which are defined on \(X \times D^\infty \), may be extended to plurisubharmonic functions on all of \(X_D = p^{-1}(X_D) \).

Let us fix a metric \(h_0 \) on \(L \) with positive curvature \(\omega_0 \). Let \(s^{(k)} \) be the orthonormal basis for \(H^0(X, L^k) \) with respect to \(h_0 \) provided by Lemma \(2.1 \) and let \(I_{s^{(k)}} \)

\(^1\) Actually, in [PS07], the weights \(\eta^{(k)}_\alpha \) in the definition of \(\Phi_k(z, w) \) were replaced by the traceless weights \(\lambda^{(k)}_\alpha \). If we denote by \(\Phi^{(k)}_k(z, w) \) the functions obtained in this manner with the traceless weights, then we have

\[
(2.12) \quad \Phi_k(z, w) = \Phi^{(k)}_k(z, w) + \frac{\text{Tr} B_k}{k(N_k + 1)} \log |w|^2.
\]

It follows that the complex Hessians of \(\Phi_k(z, w) \) and \(\Phi^{(k)}_k(z, w) \) are identical. However, the behaviors near \(|w| = 0 \) of \(\Phi_k(z, w) \) and \(\Phi^{(k)}_k(z, w) \) are different, and for our purposes, it is important to work with \(\Phi_k(z, w) \).
be a corresponding equivariant imbedding of the test configuration. Let $\Phi_k(z, w)$ be defined by (2.10). Define a closed $(1, 1)$-form Ω_k on \tilde{X}_D by

$$
(2.16) \quad \Omega_k = \frac{1}{k} (I_{z(k)} \circ p)^* \omega_{FS}
$$

where ω_{FS} is the Fubini-Study metric on \mathbb{CP}^{N_k}. Define as well a Hermitian metric H_k on \tilde{L} by $H_k = (I_{z(k)} \circ p)^* (h_{FS})^{1/k}$, where h_{FS} is the Fubini-Study metric on the hyperplane bundle $O(1)$ over \mathbb{CP}^{N_k}. Thus Ω_k is the curvature of H_k. The restriction of ω_k to X_D^* can be readily worked out explicitly in terms of the coordinates (z, w).

Using the intertwining property of the equivariant imbedding,

$$
(2.22) \quad \Omega_k|_{X \times D^*} = \pi_X^*(\omega_0) + \frac{i}{2} \partial \overline{\partial} \Phi_k(z, w).
$$

Recalling that the norm with respect to h_k^0 of a section $s(z)$ of L^k is given by $|s(z)|^2_{h_k^0} = |s(z)|^2 h_0^k$, we find the following key relation between the $(1, 1)$-forms Ω_k and the potentials $\Phi_k(z, w)$ defined earlier in (2.10):

$$
(2.20) \quad \Omega_k|_{X \times D^*} = \pi_X^*(\omega_0) + \frac{i}{2} \partial \overline{\partial} \Phi_k(z, w).
$$

2.5. The extension of Ψ_k to the total space \tilde{X}_D. The relation (2.20) that we have just obtained shows that the form $\pi_X^*(\omega_0) + \frac{i}{2} \partial \overline{\partial} \Phi_k(z, w)$, defined originally on X_D^*, admits the natural extension Ω_k to the whole of \tilde{X}_D.

Since the form $\pi_X^*(\omega_0)$ does not extend by itself to \tilde{X}, we rewrite Ω_k as

$$
(2.21) \quad \Omega_k = \Omega_1 + \frac{i}{2} \partial \overline{\partial} (\Phi_k - \Phi_1) \equiv \Omega_1 + \frac{i}{2} \partial \overline{\partial} \Psi_k.
$$

The function $\Psi_k = \Phi_k - \Phi_1$ has a simple interpretation that shows that it extends as a smooth function to the whole of \tilde{X}_D: as we saw earlier in §2.2, under the maps $I_{z(k)}$ and $I_{z(1)}$ of the test configuration ρ, the Fubini-Study metric h_{FS} pulls back respectively to $H_k^0 = (\sum \alpha |w|^{2\alpha} |s_{\alpha}^{(k)}(z)|^2)^{-1}$ and $H_1 = (\sum \alpha |w|^{2\alpha} |s_{\alpha}^{(1)}(z)|^2)^{-1}$ on $L \times D^*$. Thus

$$
(2.22) \quad \Psi_k = \log \frac{H_1}{H_k} - \frac{n}{k} \log k.
$$

The right hand side is a well-defined, smooth scalar function over the whole of \tilde{X}_D, since it is the logarithm of the ratio of two smooth metrics on the same line bundle $\tilde{L} \rightarrow \tilde{X}_D$.

Since Ω_k is non-negative as the pull-back of a non-negative form, the function Ψ_k is Ω_1-plurisubharmonic. We also define
\begin{equation}
\Psi = \lim_{k \to \infty} \sup_{\ell \geq k} \Psi_k^*,
\end{equation}
which is an extension of $\Phi - \Phi_1$ to X_D.

2.6. **Uniform estimates for Ψ_k.** Recall that in [PS07], as quoted in (2.13) above, we only have bounds for the functions $\Phi_k(z, w)$ when $|w| > e^{-T}$, for some fixed finite $T > 0$. Since the function Ψ_k extends to a smooth function on X_D, it follows that it is bounded on X_D. However, the bound may a priori depend on k. The most important step in the extension to X_D is to show that this bound can actually be made uniform in k.

We need several lemmas, starting with the following essential “lower-triangular lemma”:

Lemma 2.2. Fix a test configuration ρ and a metric h_0 on L with positive curvature ω_0. For each k, let $s(k) = \{ s_{\alpha}^{(k)} \}_{\alpha=0}^{N_k}$ be an orthonormal basis for $H^0(X, L^k)$ as in Lemma 2.1. Then for any $s_{\beta}^{(1)}$ in $s(1)$, we can write
\begin{equation}
(s_{\beta}^{(1)})^k = \sum_{\eta_\alpha^{(k)} \leq k \eta_\beta^{(1)}} a_{\beta \alpha} s_{\alpha}^{(k)},
\end{equation}
where $a_{\beta \alpha} \in \mathbb{C}$ and the subindex indicates the range of indices α which are allowed. Furthermore, the coefficients $a_{\beta \alpha}$ satisfy the bound
\begin{equation}
|a_{\beta \alpha}| \leq V \frac{1}{2} M^k,
\end{equation}
where we have set $M = \sup_{0 \leq \alpha \leq N_1} \sup_X |s_{\alpha}^{(1)}| h_0$ and $V = \int_X \omega_0^n$.

Proof of Lemma 2.2. For each k, let $E_k = \pi_* (L^k) \to \mathbb{C}$, and let $S_0(w), \cdots, S_{N_k}(w)$ be a basis for the free $\mathbb{C}[w]$ module of sections of $E_k \to \mathbb{C}$, as provided in Lemma 2.1. Now let S_β be an element of this basis for $E_1 \to \mathbb{C}$ and some β with $0 \leq \beta \leq N_1$. Then $\rho(\tau)^{-1} S_\beta(w \tau) = \tau^{\eta_\beta}_{\beta}(w \tau)$ which implies
\begin{equation}
\rho(\tau)^{-1} S_k^k(w \tau) = \tau^{\eta_\beta}_{\beta}(w \tau).
\end{equation}
On the other hand, S_β^k is a section of E_k, so we may write
\begin{equation}
S_\beta^k(w) = \sum_{\alpha=0}^{N_k} a_\alpha(w) S_\alpha(w)
\end{equation}
for certain uniquely defined polynomials $a_\alpha(w) \in \mathbb{C}[w]$. Applying the \mathbb{C}^\times action to both sides of (2.27) we obtain
\begin{equation}
\sum_{\alpha=0}^{N_k} \tau^{\eta_\beta}_{\beta}(w \tau) a_\alpha(w) S_\alpha(w) = \tau^{\eta_\beta}_{\beta}(w \tau) = \rho(\tau)^{-1} S_\beta^k(w \tau) = \sum_{\alpha=0}^{N_k} a_\alpha(w \tau) \tau^{\eta_\beta}_{\beta}(w \tau).
\end{equation}
Comparing coefficients we obtain
\begin{equation}
\tau^{\eta_\beta}_{\beta}(w \tau) = a_\alpha(w \tau) \tau^{\eta_\beta}_{\alpha}.
\end{equation}

\footnote{In general, given a non-negative smooth, closed (1,1)-form Ω on a complex manifold X, we say that a scalar function Φ is Ω-plurisubharmonic if $f_\alpha + \Phi$ is plurisubharmonic on U_α for each α if $X = \bigcup U_\alpha$ is a covering of X by coordinate charts U_α with $\Omega = \frac{1}{2} \partial \partial f_\alpha$ on U_α.}
Setting $w = 1$ we see that $a_\alpha(\tau) = a_\beta(\tau)^{r_\alpha}$ for some integer r_α and some $a_\beta \in \mathbb{C}$. But $a_\alpha(w)$ is a polynomial. Thus $r_\alpha \geq 0$ and $a_\alpha(w) = a_\beta(w)^{r_\alpha}$ for all $w \in \mathbb{C}$. The equation (2.29) implies that if $a_\beta \neq 0$, we have $k\eta_\beta^{(1)} = r_\alpha + \eta_\alpha^{(k)}$ and thus $\eta_\alpha^{(k)} \leq k\eta_\beta^{(1)}$. Evaluating (2.27) at $w = 1$ we obtain the first part of the lemma.

Finally, the orthonormality of the sections $s_\alpha^{(k)}$ implies

$$|a_{\alpha|} = \int \left| (s_\beta^{(1)})^{k}, s_\alpha^{(k)} \right|_{h_{\frac{n}{2}}^n} \leq \int \left| s_\beta^{(1)} \right|_{h_0} \cdot \left| s_\alpha^{(k)} \right|_{h_{\frac{n}{2}}} \leq M^k \nu^\frac{1}{2}.$$

Remark. It may happen that $\eta_\alpha^{(k)} < k\eta_\beta^{(1)}$ for all α with $a_\beta \neq 0$: that is, it may happen that $a_\alpha(w)$ vanishes at $w = 0$ for all α. This would mean that $S_\beta(0)$ is a non-zero section of $H^0(X_0, L_0)$ but that $S_\beta^{(1)}(0) = 0 \in H^0(X_0, L_0)$; in other words, the section $S_\beta(0)$ is nilpotent (which is possible if X_0 is a non-reduced scheme, that is, if X_0 has nilpotent elements in its structure sheaf).

Lemma 2.3. **The complex manifold \tilde{X}_D always admits a Kähler metric.**

Proof of Lemma 2.3. This lemma is proved in [PS07a]. In fact, it is proved there that there exists a line bundle \mathcal{M} on \tilde{X}_D which is trivial on \tilde{X}^\times and such that $\mathcal{L}^m \otimes \mathcal{M}$ is positive for some fixed positive power m. The desired Kähler metric on \tilde{X}_D can then be taken to be the ratio of the curvature of $\mathcal{L}^m \otimes \mathcal{M}$ by m. \hfill \Box

Lemma 2.4. **There exists a finite constant C so that**

$$\sup_{k \geq 1} \sup_{\tilde{X}_D} |\Psi_k| \leq C < \infty.$$

In particular,

$$\sup_{\tilde{X}_D} |\Psi| \leq C < \infty.$$

Proof of Lemma 2.4. Let H be a Kähler metric on \tilde{X}_D, which exists by Lemma 2.3. Since Ψ_1 is Ω_1-plurisubharmonic, it follows that $\Delta_H \Psi_1 \geq -C_1$, where Δ_H is the Laplacian with respect to H, and C_1 is an upper bound for the trace of Ω_1 with respect to the metric H. On the other hand, $\Psi_k |_{\partial \tilde{X}_D} \to -\Phi_1$ uniformly as $k \to \infty$, and thus $\Psi_k |_{\partial \tilde{X}_D} \leq C_2$. Let u be the smooth function on \tilde{X}_D which is the solution of the Dirichlet problem

$$\Delta_H u = -C_1 \text{ on } \tilde{X}_D, \quad u = C_2 \text{ on } \partial \tilde{X}_D.$$

By the maximum principle, we have $\Psi_k \leq u$ for all k, and this gives the upper bound.

To establish the lower bound, it suffices to prove that $\Psi_k \geq -C$ on \tilde{X}_D^\times, where C is a constant independent of k, since each function Ψ_k is smooth on \tilde{X}_D. On X^\times, we can use the explicit expressions for $X \times D^\times$ and write

$$\Psi_k = \log \frac{\sum_{\alpha=0}^{N_k} \left| w^{2\eta_\alpha^{(k)}} \right|^2_{s_\alpha^{(k)}}} {\sum_{\beta=0}^{N_1} \left| w^{2\eta_\beta^{(1)}} \right|^2_{s_\beta^{(1)}}} - \frac{n}{k} \log k.$$

Now fix w with $0 < |w| \leq 1$, fix $z \in X$, and choose β_0 so that

$$\left| w^{2\eta_\beta^{(1)}} \right|^2_{s_\beta^{(1)}(z)} = \sup_{0 \leq \beta \leq N_1} \left| w^{2\eta_\beta^{(1)}} \right|^2_{s_\beta^{(1)}(z)}.$$

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
In view of Lemma 2.2, we can write
\[(2.36) \quad \left| (s^{(1)}_{\beta_0})_k \right|_{h_0^k} \leq M^k V^{1/2} \sum_{k \eta_{\beta_0}^{(1)} \geq \eta_{\alpha}^{(k)}} \left| s^{(k)}_{\alpha} \right|_{h_0^k}.
\]
Since \(|w| \leq 1\), we have then
\[|w|^{2k \eta_{\beta_0}^{(1)}} \left| s^{(k)}_{\beta_0}(z) \right|_{h_0^k}^2 \leq M^{2k} V \left(\sum_{k \eta_{\beta_0}^{(1)} \geq \eta_{\alpha}^{(k)}} |w|^{m^{(k)}} \left| s^{(k)}_{\alpha}(z) \right|_{h_0}^2 \right)^2
\]
\[(2.37) \quad \leq M^{2k} V (N_k + 1) \sum_{k \eta_{\beta_0}^{(1)} \geq \eta_{\alpha}^{(k)}} |w|^{2m^{(k)}} \left| s^{(k)}_{\alpha}(z) \right|_{h_0^k}^2.
\]
Returning to \(\Psi_k\), we can now write
\[\Psi_k(z, w) \geq \log \left(\sum_{\alpha=0}^{N_k} |w|^{2m^{(k)}} \left| s^{(k)}_{\alpha}(z) \right|_{h_0^k} \right)^{1/2} - \frac{n}{k} \log k
\]
\[(2.38) \quad \geq - \frac{1}{k} \log (V(N_k + 1)) - 2 \log M - \frac{n}{k} \log k - \log (N_k + 1)
\]
in view of the preceding inequality. This establishes Lemma 2.4 since \(N_k \leq C k^n\).

2.7. The Monge-Ampère equation on the whole of \(\hat{X}_D\). We can now prove the main theorem of this section:

Theorem 2.5. Let \(L \to X\) be a positive line bundle over a compact complex manifold, let \(\rho\) be a test configuration, and let \(h_0\) be a metric on \(L\) with positive curvature \(\omega_0\). Let \(\hat{X}\) be an \(S^1\) invariant resolution \(p : \hat{X} \to X_{\text{red}} \to \mathbb{C}\) of \(X\), and let \(\tilde{X}_D = (\pi_{\text{red}} \circ p)^{-1}(D)\). Let \(\Psi_k, \Phi\) be defined as in (2.10) and (2.11). Set
\[(2.39) \quad \Psi = \Phi - \Phi_1 \text{ on } X \times D^k.
\]
Then the function \(\Psi\) extends to a bounded, \(\Omega_1\)-plurisubharmonic function on \(\tilde{X}_D\), which is a generalized solution of the following Dirichlet problem on \(\tilde{X}_D\),
\[(2.40) \quad (\Omega_1 + \frac{i}{2} \bar{\partial} \partial \Psi)^{n+1} = 0 \text{ on } \tilde{X}_D, \quad \Psi = -\Phi_1 \text{ on } \partial \tilde{X}_D.
\]
Here \(\Omega_1\) is the pull-back to \(\tilde{X}_D\) of the Fubini-Study metric by \(I_{\hat{\omega}}^{(1)} \circ p\).

Proof of Theorem 2.5. The function \(\Psi\) satisfies the completely degenerate Monge-Ampère equation on \(X_D^\times\). Since the singular set \(X_0\) is an analytic subvariety and since Lemma 2.3 implies that the function \(\Psi\) defined by (2.22) is a bounded, \(\Omega_1\)-plurisubharmonic function on \(\tilde{X}_D\), it follows from general pluripotential theory that \(\Psi\) satisfies the same completely degenerate equation on \(\tilde{X}_D\). Alternatively, a direct proof of this fact can also be given, since we already have at hand all the necessary ingredients. It suffices to observe that \(\Psi_k\) satisfies the following properties and apply Theorem 3 of [PS06]:

Lemma 2.6. The functions \(\Psi_k\) satisfy
\[(a) \sup_k \sup_{\tilde{X}_D} |\Psi_k| \leq C < \infty.
\]
\[(b) \quad \int_{\tilde{X}_D} (\Omega_1 + \frac{i}{2} \bar{\partial} \partial \Psi_k)^{n+1} \leq C \frac{1}{k}.
\]
(c) Let \(T \) be the vector field \(T = \frac{\partial}{\partial m} \) defined in a neighborhood of the boundary \(|w| = 1 \) on \(\bar{X}_D \), where \(t = \log |w| \). Then \(\sup_U |T \Psi_k| \leq C \), where \(C \) is a constant and \(U \) is a neighborhood of the boundary \(|w| = 1 \), independent of \(k \).

(d)

\[
\sup_{\partial \bar{X}_D} |\Psi_k + \Phi_1| \leq a_k,
\]

with \(a_k \) decreasing to 0 and \(\sum_{k=1}^{\infty} a_k < \infty \).

Proof of Lemma 2.6 Part (a) is just the statement of Lemma 2.4. Part (b) follows from the fact that the form \(\Omega_1 + \frac{i}{2} \partial \bar{\partial} \Psi_k \) is smooth on \(\mathcal{X}_D \) and that its Monge-Ampère mass on \(\mathcal{X}_D^\infty \) coincides with the Monge-Ampère mass of \(\omega_k = (\pi_X^* (\omega_0) + \frac{i}{2} \partial \bar{\partial} \Phi_k) \) on \(X \times D^\infty \). As we already observed in footnote 1, \(\Phi_k \) and \(\Phi_k^{\#} \) have the same complex Hessian. So the desired estimate follows from the analogous estimate for the Monge-Ampère mass of \((\pi_X^* (\omega_0) + \frac{i}{2} \partial \bar{\partial} \Phi_k^{\#}) \) established in Lemma 4.3 of [PS07].

Part (c) follows from the bound \(|\eta^{(k)}_s| \leq C \) established in Lemma 3.1 of [PS07]. Finally, part (d), with \(a_k = Ck^{-2} \), follows from the Tian-Yau-Zelditch theorem [T90] [Y93] [Z] (see also Catlin [Ca] and Lu [L]) as shown in the case of geodesic segments in [PS06].

2.8. Positivity of the background form away from \(p^{-1}(X_0) \). The equation (2.40) provides an extension of the degenerate complex Monge-Ampère equation to the compact manifold with boundary \(\bar{X}_D \). It is however written with respect to a background \((1,1)\)-form \(\Omega_1 \) which may be degenerate. In preparation for uniqueness theorems for the complex Monge-Ampère equation, we rewrite it now with a background \((1,1)\)-form which is non-negative everywhere and strictly positive away from \(p^{-1}(X_0) \).

For this, we make use of Lemma 1 of [PS09], which asserts the existence of a \(S^1 \) invariant metric \(H_0 \) on \(\bar{L} \) with \(H_0|_{\partial \bar{X}_D} = h_0 \) and

\[
\Omega_0 = -\frac{i}{2} \partial \bar{\partial} \log H_0 \geq 0 \quad \text{on} \quad \bar{X}_D, \quad \Omega_0 > 0 \quad \text{on} \quad \mathcal{X}_D^\infty.
\]

Let \(\Psi_0 \) be defined by

\[
\Psi_0 = \log \frac{H_0}{(\mathcal{L}^{(1)} \circ p)^*(h_{FS})} = \log \frac{H_0}{H_1},
\]

which is a smooth function on \(\bar{X}_D \), since \(H_0, H_1 \) are two smooth metrics on the same line bundle \(\bar{L} \). Restricted to \(\partial \bar{X}_D \),

\[
(2.42) \quad \Psi_0|_{\partial \bar{X}_D} = \log \frac{h_0}{(\sum_{\alpha=0}^{N_1} |s_{\alpha}^{(1)}|_0^2)^{-1}} = \log \sum_{\alpha=0}^{N_1} \frac{|s_{\alpha}^{(1)}|_0^2}{H_0} = \Phi_1|_{\partial \bar{X}_D}.
\]

Let \(\Psi \) be the solution on \(\bar{X}_D \) of the completely degenerate Monge-Ampère equation with background form \(\Omega_1 \) as given in Theorem 2.5. Define the function \(\Phi \) on \(\mathcal{X}_D \) by

\[
(2.43) \quad \Phi = \Psi + \Psi_0.
\]

Clearly \((\Omega_0 + \frac{i}{2} \partial \bar{\partial} \Phi)^{n+1} = 0 \) on \(\bar{X}_D \). Furthermore, restricted to the boundary \(\partial \bar{X}_D \),

\[
(2.44) \quad \Phi|_{\partial \bar{X}_D} = \Psi|_{\partial \bar{X}_D} + \Psi_0|_{\partial \bar{X}_D} = -\Phi_1|_{\partial \bar{X}_D} + \Phi_1|_{\partial \bar{X}_D} = 0.
\]

In summary, we have obtained the following alternative formulation of Theorem 2.6.
Theorem 2.7. Let the setting be the same as in Theorem 2.5 and let \(H_0 \) be a metric on \(L \) as in (2.41), \(\Phi_0 = \log H_0 \), and \(\Phi = \Phi_1 + \Psi_0 \). Then the function \(\hat{\Psi} \) is a bounded, \(\Omega_0 \)-plurisubharmonic generalized solution of the following Dirichlet problem:

\[
(\Omega_0 + \frac{i}{2} \partial \bar{\partial} \hat{\Psi})^{n+1} = 0 \text{ on } \tilde{\mathcal{X}}_D, \quad \hat{\Psi}|_{\partial \tilde{\mathcal{X}}_D} = 0.
\]

3. A uniqueness theorem for completely degenerate complex Monge-Ampère equations

There has been considerable progress recently on uniqueness theorems for the complex Monge-Ampère equation and in particular for certain broad classes of possibly unbounded solutions (see e.g. Blocki [B03], Blocki and Kolodziej [BK], Dinew [D], and references therein). For our purposes we need a version of the comparison principle of Bedford and Taylor which can be formulated as follows:

Theorem 3.1. Let \((M, \Omega)\) be a compact Kähler manifold with smooth boundary \(\partial M \) and dimension \(m \), and let \(\Omega_0 \) be a smooth, non-negative, closed \((1,1)\)-form. Then we have

\[
\int_{\{u < v\}} (\Omega_0 + \frac{i}{2} \partial \bar{\partial} v)^m \leq \int_{\{u < v\}} (\Omega_0 + \frac{i}{2} \partial \bar{\partial} u)^m
\]

for all \(u, v \) in \(L^\infty \), \(\Omega_0 \)-plurisubharmonic, and satisfying \(\liminf_{z \to \partial M} (u(z) - v(z)) \geq 0 \).

The proof is a straightforward adaption of the original proof of Bedford-Taylor [BT82] in \(\mathbb{C}^n \) to our setting using the approximation theorem for plurisubharmonic functions of Blocki and Kolodziej [BK].

Theorem 3.1 implies the following uniqueness theorem for \(\Omega_0 \)-plurisubharmonic solutions of completely degenerate Monge-Ampère equations, where the form \(\Omega_0 \) is allowed to be degenerate along an analytic subvariety:

Theorem 3.2. Let \((M, \Omega)\) be a Kähler manifold with smooth boundary \(\partial M \) and dimension \(m \), and let \(u, v \in L^\infty \) be \(\Omega_0 \)-plurisubharmonic functions satisfying

\[
(\Omega_0 + \frac{i}{2} \partial \bar{\partial} u)^m = (\Omega_0 + \frac{i}{2} \partial \bar{\partial} v)^m = 0, \quad \limsup_{z \to \partial M} (u(z) - v(z)) = 0.
\]

If \(\Omega_0 \) is \(\geq 0 \) everywhere and \(> 0 \) away from an analytic subvariety of strictly positive codimension which does not intersect \(\partial M \), then we must have \(u = v \) on \(M \).

Proof. By adding the same large constant to both \(u \) and \(v \), we may assume that \(u, v > 0 \). Arguing by contradiction we begin by assuming that \(S = \{u < v\} \neq \emptyset \).

Since \(u, v \) are \(\Omega_0 \)-plurisubharmonic, the set \(S \) must have strictly positive measure (it suffices to work in local coordinates and apply the corresponding well-known property of plurisubharmonic functions on \(\mathbb{C}^m \)). Furthermore, since we can write

\[
S = \bigcup_{\varepsilon > 0} \{u < (1 - \varepsilon)v\} \equiv \bigcup_{\varepsilon > 0} S_\varepsilon,
\]
it follows that \(S_\varepsilon \) must have strictly positive measure for some \(\varepsilon > 0 \). Fix one such value of \(\varepsilon \). Since \(u \geq v \geq (1 - \varepsilon)v \) on \(\partial M \), we may apply the comparison principle for Kähler manifolds and obtain

\[
0 \geq \int_{S_\varepsilon} (\Omega_0 + \frac{i}{2} \partial \bar{\partial} u)^m = \int_{S_\varepsilon} (\Omega_0 + (1 - \varepsilon) \frac{i}{2} \partial \bar{\partial} v)^m \geq \int_{S_\varepsilon} \Omega_0^m \geq \int_{S_\varepsilon} \Omega_0^m
\]

since the form \(\Omega_0 + \frac{i}{2} \partial \bar{\partial} v \) is non-negative. Let \(V_\delta \) be the complement of a neighborhood of the divisor \(D \), with \(\Omega_0^m \geq \delta \Omega^m \) for each \(\delta > 0 \) small enough. Clearly for each \(\delta > 0 \)

\[
\int_{S_\varepsilon} \Omega_0^m \geq \int_{S_\varepsilon \cap V_\delta} \Omega_0^m \geq \delta \int_{S_\varepsilon \cap V_\delta} \Omega^m.
\]

Since \(M \setminus D = \bigcup_{\delta > 0} V_\delta \) and \(D \) has measure 0 with respect to the volume form \(\Omega^m \), we have

\[
0 < \int_{S_\varepsilon} \Omega^m = \lim_{\delta \rightarrow 0} \int_{S_\varepsilon \cap V_\delta} \Omega^m,
\]

which implies that \(\int_{S_\varepsilon \cap V_\delta} \Omega^m > 0 \) for some \(\delta > 0 \). Altogether, we obtain a contradiction. Thus \(\{ u < v \} \) must be empty. Interchanging the roles of \(u \) and \(v \) completes the proof. \(\square \)

4. Proof of Theorem 1.1

We now prove Theorem 1.1. In Theorem 2.7, we have shown that the function \(\hat{\Phi} \) is a bounded, \(\Omega_0 \)-plurisubharmonic solution of the Dirichlet problem (2.45) on \(\tilde{X}_D \). On the other hand, in [PS09] (Theorem 3), it was shown that the same Dirichlet problem admits a bounded, \(\Omega_0 \)-plurisubharmonic solution which is \(C^{1,\alpha} \) for any \(0 < \alpha < 1 \) on \(X_D^\times \). By Theorem 3.2, it follows that the two solutions must coincide. Thus \(\hat{\Phi} \) is \(C^{1,\alpha} \) on \(X_D^\times \). Since \(\hat{\Phi} = \Phi - \Phi_1 + \Psi_0 \) and both \(\Phi_1 \) and \(\Psi_0 \) are smooth on \(X_D^\times \), it follows that \(\Phi \) is \(C^{1,\alpha} \) on \(X_D^\times = X \times D^\times \). \(\square \)

Acknowledgement

We would like to acknowledge some useful comments by the referee.

References

DEPARTMENT OF MATHEMATICS, COLUMBIA UNIVERSITY, NEW YORK, NEW YORK 10027
E-mail address: phong@math.columbia.edu

DEPARTMENT OF MATHEMATICS, RUTGERS UNIVERSITY, NEWARK, NEW JERSEY 07102
E-mail address: sturm@rutgers.edu