Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Factoring newparts of Jacobians of certain modular curves


Authors: M. Ram Murty and Kaneenika Sinha
Journal: Proc. Amer. Math. Soc. 138 (2010), 3481-3494
MSC (2010): Primary 11F11, 11F25, 11F30, 11G10, 11G18
DOI: https://doi.org/10.1090/S0002-9939-10-10376-1
Published electronically: May 5, 2010
MathSciNet review: 2661548
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove a conjecture of Yamauchi which states that the level $ N$ for which the new part of $ J_0(N)$ is $ \mathbb{Q}$-isogenous to a product of elliptic curves is bounded. We also state and partially prove a higher-dimensional analogue of Yamauchi's conjecture. In order to prove the above results, we derive a formula for the trace of Hecke operators acting on spaces $ S^{new}(N,k)$ of newforms of weight $ k$ and level $ N.$ We use this trace formula to study the equidistribution of eigenvalues of Hecke operators on these spaces. For any $ d\geq 1,$ we estimate the number of normalized newforms of fixed weight and level, whose Fourier coefficients generate a number field of degree less than or equal to $ d.$


References [Enhancements On Off] (What's this?)

  • 1. A. O. L. Atkin and J. Lehner, Hecke operators on $ \Gamma_0(m)$, Math. Ann., Vol. 185 (1970), 134-160. MR 0268123 (42:3022)
  • 2. M. H. Baker, E. González-Jiménez, J. González and B. Poonen, Finiteness results for modular curves of genus at least $ 2$, Amer. J. Math., Vol. 127 (2005), 1325-1387. MR 2183527 (2006i:11065)
  • 3. D. Bressoud and S. Wagon, A course in computational number theory, Key College Publishing, Emeryville, CA, 2000. MR 1756372 (2001f:11200)
  • 4. H. Cohen, A course in computational algebraic number theory, Graduate Texts in Mathematics, 138, Springer, 1993. MR 1228206 (94i:11105)
  • 5. H. Cohen, Sur les $ N$ tels que $ J_0(N)$ soit $ \mathbb{Q}$-Isogène à un produit de courbes elliptiques, preprint, available on http://www.ufr-mi.u-bordeaux.fr/$ \sim$cohen
  • 6. L. E. Dickson, History of the theory of numbers, Vol. 3, Chelsea Publishing Co., New York, 1966. MR 0245499 (39:6807a)
  • 7. M. Eichler, On the class number of imaginary quadratic fields and the sums of divisors of natural numbers, J. Indian Math. Soc., Vol. 19 (1955), 153-180. MR 0080769 (18:299a)
  • 8. E. Halberstadt and A. Kraus, Courbes de Fermat: résultats et problèmes, J. Reine Angew. Math., Vol. 548 (2002), 167-234. MR 1915212 (2003h:11068)
  • 9. C. Hamer, A formula for the traces of the Hecke operators on certain spaces of newforms, Arch. Math. (Basel), Vol. 70 (1998), no. 3, 204-210. MR 1604056 (99b:11045)
  • 10. M. N. Huxley, A note on polynomial congruences, Recent Progress in Analytic Number Theory, Vol. 1 (Durham, 1979), Academic Press, London-New York, 1981, 193-196. MR 637347 (83e:10005)
  • 11. A. Knightly and C. Li, Traces of Hecke operators, Mathematical Surveys and Monographs, 133, American Mathematical Society, Providence, RI, 2006. MR 2273356 (2008g:11090)
  • 12. C.-W. Lim, Decomposition of $ S_k(\Gamma_0(N))$ over $ \mathbb{Q}$ and variants of partial nim, PhD thesis, University of California at Berkeley, 2005.
  • 13. G. Martin, Dimensions of the spaces of cusp forms and newforms on $ \Gamma_0(N)$ and $ \Gamma_1(N)$, J. Number Theory, Vol. 112 (2005), no. 2, 197-240. MR 2141534 (2005m:11069)
  • 14. M. Ram Murty, Problems in analytic number theory, Graduate Texts in Mathematics, 206, second edition, Springer, 2007. MR 2376618 (2008j:11001)
  • 15. M. Ram Murty and K. Sinha, Effective equidistribution of eigenvalues of Hecke operators, J. Number Theory, Vol. 129 (2009), no. 3, 681-714. MR 2488597
  • 16. S. Ramanujan, Highly composite numbers, Collected Papers of Srinivasa Ramanujan, AMS Chelsea Publ., Amer. Math. Soc., Providence, RI, 2000, 78-128. MR 2280858
  • 17. K. A. Ribet, Twists of modular forms and endomorphisms of abelian varieties, Math. Ann., Vol. 253 (1980), no. 1, 43-62. MR 594532 (82e:10043)
  • 18. J. B. Rosser and L. Schoenfeld, Sharper bounds for the Chebyshev functions $ \theta(x)$ and $ \psi(x)$, Math. Comp., Vol. 29 (1975), 243-269. MR 0457373 (56:15581a)
  • 19. E. Royer, Facteurs $ \mathbb{Q}$-simples de $ J\sb 0(N)$ de grande dimension et de grand rang, Bull. Soc. Math. France., Vol. 128 (2000), no. 2, 219-248. MR 1772442 (2001j:11041)
  • 20. J.-P. Serre, Répartition asymptotique des valeurs propres de l'opérateur de Hecke $ T_p$, J. Amer. Math. Soc., Vol. 10 (1997), no. 1, 75-102. MR 1396897 (97h:11048)
  • 21. G. Shimura, On the factors of the Jacobian variety of a modular function field, J. Math. Soc. Japan, Vol. 25 (1973), 523-544. MR 0318162 (47:6709)
  • 22. T. Yamauchi, On $ \mathbb{Q}$-simple factors of Jacobian varieties of modular curves, Yokohama Math. J., Vol. 53 (2007), no. 2, 149-160. MR 2302608 (2008k:11062)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 11F11, 11F25, 11F30, 11G10, 11G18

Retrieve articles in all journals with MSC (2010): 11F11, 11F25, 11F30, 11G10, 11G18


Additional Information

M. Ram Murty
Affiliation: Department of Mathematics and Statistics, Queen’s University, Jeffery Hall, Kingston, Ontario, Canada K7L 3N6
Email: murty@mast.queensu.ca

Kaneenika Sinha
Affiliation: Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2G1
Email: kaneenik@ualberta.ca

DOI: https://doi.org/10.1090/S0002-9939-10-10376-1
Keywords: Traces of Hecke operators, Fourier coefficients of modular cusp forms, modular curves, Jacobian varieties
Received by editor(s): August 4, 2009
Received by editor(s) in revised form: January 7, 2010
Published electronically: May 5, 2010
Additional Notes: The first author was partially supported by an NSERC grant.
The second author was partially supported by a PIMS fellowship.
Communicated by: Wen-Ching Winnie Li
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society