Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



An example concerning the Menger-Urysohn formula

Authors: Jan van Mill and Roman Pol
Journal: Proc. Amer. Math. Soc. 138 (2010), 3749-3752
MSC (2010): Primary 54F45, 55M10
Published electronically: May 6, 2010
MathSciNet review: 2661573
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We construct subsets $ A$, $ B$ of the Euclidean space $ \mathbb{R}^{4}$ such that $ \hbox{dim}(A\cup B)>\hbox{dim}(A \times B)+1$. This provides a counterexample to a conjecture by E. Ščepin for subspaces of $ \mathbb{R}^{4}$.

References [Enhancements On Off] (What's this?)

  • [C] V. A. Chatyrko, Classical dimension theory, Open Problems in Topology. II (E. Pearl, ed.), North-Holland Publishing Co., Amsterdam, 2007, pp. 621-632.
  • [D] A. N. Dranishnikov, On the dimension of the product of two compacta and the dimension of their intersection in general position in Euclidean space, Trans. Amer. Math. Soc. 352 (2000), 5599-5618. MR 1781276 (2001j:55002)
  • [D-D] A. N. Dranishnikov and J. Dydak, Extension theory of separable metrizable spaces with applications to dimension theory, Trans. Amer. Math. Soc. 353 (2001), 133-156. MR 1694287 (2001f:55002)
  • [F] V. V. Fedorčuk, The Fundamentals of Dimension Theory, Encyclopedia of Mathematical Sciences (A. V. Arhangel$ '$skiĭ and L. S. Pontrjagin, eds.), vol. 17, Springer-Verlag, Berlin, 1990, pp. 91-202.
  • [K] K. Kuratowski, Topology I, Academic Press, New York, 1966; Topology II, Academic Press, New York, 1968. MR 0217751 (36:840); MR 0259835 (41:4467)
  • [L] A. Lelek, Dimension inequalities for unions and mappings of separable metric spaces, Coll. Math. 23 (1971), 69-91. MR 0322829 (48:1190)
  • [L-L] M. Levin, W. Lewis, Some mapping theorems for extensional dimension, Israel J. Math. 133 (2003), 61-76. MR 1968422 (2004d:54032)
  • [vM] J. van Mill, The infinite-dimensional topology of function spaces, North-Holland Publishing Co., Amsterdam, 2001. MR 1851014 (2002h:57031)
  • [vM-P1] J. van Mill and R. Pol, Note on weakly $ n$-dimensional spaces, Monatsh. Math. 132 (2001), 25-33. MR 1825717 (2002a:54027)
  • [vM-P2] J. van Mill and R. Pol, On spaces without non-trivial subcontinua and the dimension of their products, Topology Appl. 142 (2004), 31-48. MR 2071291 (2005e:54034)
  • [vM-P3] J. van Mill and R. Pol, A complete $ C$-space whose square is strongly infinite-dimensional, Israel J. Math. 154 (2006), 209-220. MR 2254540 (2007h:54008)
  • [R-S-W] L. Rubin, R. M. Schori, and J. J. Walsh, New dimension-theory techniques for constructing infinite-dimensional examples, Gen. Top. Appl. 10 (1979), 93-102. MR 519716 (80e:54049)
  • [T] B. Tomaszewski, On weakly $ n$-dimensional spaces, Fund. Math. 103 (1979), 1-8. MR 535830 (80k:54067)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 54F45, 55M10

Retrieve articles in all journals with MSC (2010): 54F45, 55M10

Additional Information

Jan van Mill
Affiliation: Department of Mathematics, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands

Roman Pol
Affiliation: Institute of Mathematics, University of Warsaw, Banacha 2, 02-097 Warszawa, Poland

Keywords: Menger-Urysohn formula, dimension, weakly $n$-dimensional, dimension of product
Received by editor(s): August 7, 2009
Received by editor(s) in revised form: January 12, 2010
Published electronically: May 6, 2010
Communicated by: Alexander N. Dranishnikov
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society