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ABSTRACT. It is shown that the K-theory of every noetherian base scheme of
finite Krull dimension is represented by a commutative strict ring object in
the setting of motivic stable homotopy theory. The adjective ‘strict’ is used
here in order to distinguish between the type of ring structure we construct
and one which is valid only up to homotopy. An analogous topological result
follows by running the same type of arguments as in the motivic setting.

1. INTRODUCTION

Motivic homotopy theory can be viewed as an expansion of classical homotopy
theory to an algebro-geometric setting. This has enabled the introduction of ho-
motopy theoretic techniques in the study of generalized ring (co)homology theories
for schemes, and as in classical algebra one studies these via modules and algebras.
From this perspective, motives are simply modules over the motivic Eilenberg-
MacLane ring spectrum [9], [I0]. The main purpose of this paper is to show that
the K-theory of every noetherian base scheme of finite Krull dimension acquires
strict ring object models in motivic homotopy theory, and thereby pave the way
towards a classification of modules over K-theory. An example of a base scheme of
particular interest is the integers. Working with some flabby smash product which
only become associative, commutative and unital after passage to the motivic stable
homotopy category is inadequate for our purposes. The paper is couched in terms of
motivic symmetric spectra [4], following constructions introduced by Schwede [11]
in the classical contexts of simplicial and topological symmetric spectra. Through-
out the term ‘K-theory’ is short for homotopy algebraic K-theory.

Fix a noetherian base scheme S of finite Krull dimension with multiplicative
group scheme Gy,. Denote by KGL the ordinary motivic spectrum representing
K-theory [14]. As shown in [I2] (see also [3] and [7]), inverting a homotopy class
B € m3,12°BGy . in the motivic suspension spectrum of the classifying space of
the multiplicative group scheme yields a natural isomorphism in the motivic stable
homotopy category

$%°BG . [871] —— KGL.
We shall turn the Bott inverted model for K-theory into a commutative monoid

KGL? in the category of motivic symmetric spectra. To start with, the multi-
plicative structure of Gy, induces a commutative monoid structure on the motivic
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symmetric suspension spectrum of the classifying space BGy,_. A far more involved
analysis dealing with an actual map rather than some homotopy class allows us to
define KGL? and eventually verify that it is a commutative monoid with the same
homotopy type as K-theory. This part of the paper is self-contained. Several of
the main techniques employed in the proof are of interest in their own right and
can be traced back to constructions for symmetric spectra in [I1].

When suitably adopted, the motivic argument also works in topological cate-
gories. The topological strict ring models appear to be new, even in the case of
symmetric spectra [11].

The Bott element considered by Voevodsky in [14] is obtained from the virtual
vector bundle

[Op1] = [Op1 (=1)].

A key step in the construction of KGL” is to interpret the same element, viewed
in the pointed motivic unstable homotopy category, as an actual map between
motivic spaces. In order to make this part precise we shall use a lax symmetric
monoidal fibrant replacement functor for pointed motivic spaces. Fibrancy is a
constant source for extra fun in abstract homotopy theory. The problem resolved
in this paper is no exception in that respect. It is also worthwhile to emphasize
the intriguing fact that 8 does not play a role in the definition of the multiplicative
structure of KGL?. However, the Bott element enters in the definition of the unit
map 1 — KGL” , which is part of the monoid structure, and in the structure maps.
In fact, up to some fibrant replacement, KGL” is constructed fairly directly from
Y*BGp by intertwining a map representing § with the structure maps of the
suspension spectrum of BGy, . On the level of homotopy groups this type of
intertwining has the effect of inverting the Bott element. As a result, we deduce
that KGL? has the homotopy type of K-theory. The ‘strictification method’ can
also be used to show that the periodized algebraic cobordism spectrum introduced
in [3] acquires a strict ring model.

In [8] it is shown that under a certain normalization assumption the ring structure
on KGL in the motivic stable homotopy category is unique over the ring of integers Z.
For any base scheme S the multiplicative structure pulls back to give a distinguished
monoidal structure on KGL, which is unique according to [6l Remark 9.8 (ii)]. We
show that the multiplicative structures on KGL? and KGL coincide in the motivic
stable homotopy category. The proof of this result is not formal. A key input
is the subtle result that K-theory does not support any nontrivial phantom map
in the motivic stable homotopy category over any base scheme. In turn, this is a
consequence of the fundamental Landweber exactness theorem in motivic homotopy
theory [6].

In [3] the setup of oo-categories is used to note the existence of an E., or co-
herently homotopy commutative structure on K-theory. Work in progress suggests
there exists a unique such structure. With the construction of KGL” in hand one
has a strict model for K-theory, and the strictness has the pleasing consequence
that the model is amenable to a simpler homotopical study. Work on this subject
has been initiated in [I]. The existence of a suitable model structure for commu-
tative motivic symmetric ring spectra suggests that the F-structure in [3] can be
lifted to a strict commutative ring model for K-theory.
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Added in proof. A different construction of an associative motivic symmetric ring
spectrum representing algebraic K-theory over a regular scheme has been obtained
by Youngsoo Kim in his PhD thesis at UTUC. O

2. A STRICT MODEL

The main focus of this section is the construction of a strict model for K-theory
in the category of motivic symmetric spectra. Throughout we use the ‘closed” mo-
tivic model structure in [8] with a view towards realization functors. An extensive
background in motivic stable homotopy theory is not assumed.

The classifying space BGy, has terms GX™ for n > 0 with the convention that
its zeroth term is a point. Its face and degeneracy maps, which are defined in a
standard way using diagonals and products, allow us to consider BG, as a motivic
space (that is, a simplicial presheaf on the Nisnevich site of the base scheme S).

Throughout we use the following standard notation: Let S*! denote the mo-
tivic sphere defined as the smash product of the simplicial circle S10 = Al/9A!
with Gy, pointed by its one-section. For n > 2 we set §2™n = §2n—2n—1 A §2.1,
When forming motivic spectra, we shall, for consistency with [I1], smash with the
suspension coordinate S%! from the right.

In the Introduction it was recalled that the Bott element is a homotopy class

XS Wg)lzooBGer.
As such, it is represented by a map of pointed motivic spaces
527L+2,n+1 N (BGm+ A SQn,n)ﬁb

for some n, where (—)%" denotes a fibrant replacement functor. The construction
we give of KG L”? works for any such representative provided the fibrant replacement
functor is lax symmetric monoidal. By Lemma 2.2l we may choose a fibrant replace-
ment functor with the stated properties. As shown in the following, the situation
at hand allows for an explicit construction of a map

547 = (BGpy A SHH)EP

that represents the Bott element.

Before proceeding with the construction of the strict models we discuss fibrancy
of the multiplicative group scheme and its classifying space, pertaining to the dis-
cussion of a fibrant replacement functor in the above.

Example 2.1. The classifying space of the multiplicative group scheme is section-
wise fibrant because it takes values in simplicial abelian groups. When S is regular,
then Gy, is fibrant. However, as the following discussion shows, BGy, is not fibrant.

The standard open covering of the projective line by affine lines yields an ele-
mentary distinguished square:

(2.1) Gn — Al
Al —— P!
Let P denote the homotopy pullback of the diagram
BGn(Al) —— BGp(Gp) «—— BG(AY)
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obtained by applying BGy, to (). Then the homotopy fiber of the map P —
BGn(A!) is weakly equivalent to the homotopy fiber F of BGp(A!) = BGy(Gn).
For a ring R, let R* denote its multiplicative group of units. With these definitions
there exist induced exact sequences of homotopy groups

0 m P Og = Os[til]x moF mo P 0

and

0 —— 05 = Og[t]* — Og]t, t~1]* moF 0.

(Here t is an indeterminate.) Hence Og[t~!]* — moF cannot be surjective. Thus
P is not connected and, in particular, not weakly equivalent to BG(P*') = BOS.
This shows that BG,, does not satisfy the Nisnevich fibrancy condition; see [2], [4],
5]

We write
i: SYON G — BGpy
for the inclusion of the 1-skeleton G, into the classifying space BGy,. Let
¢: SY9A G = BG
denote the constant map. Via the motivic weak equivalences S'° A G, ~ P! and
BG, ~ P°°, the map ¢ can be identified in the pointed motivic unstable homotopy
category with the inclusion
P! - P>,
In homogeneous coordinates the inclusion map is given by
[:yl—lx:y:0:---].
Similarly, the map ¢ coincides with the canonical composite map
P! - S — P>
given by
[:y]—[1:0:---].
Adding a disjoint base point to the classifying space of Gy, yields pointed maps
i+,C+I 8271 — BGm+

for the base point of BG,. Now in order to move the base point around in BG,
we take the unreduced suspension of both these maps. Recall that the unreduced
suspension of a motivic space A is defined as the pushout

S(A) =AxA! Uaxaal OAL.

One can view it as a pointed motivic space by the image of 0 € JA'. With this
definition, the unreduced suspensions of the maps iy and ci are pointed with
respect to the image of (4,0) in their targets. If A is pointed, the canonical map
q: S(A) — XA to the reduced suspension is a weak equivalence. Hence there exists
a map of pointed motivic spaces

547 = (S(SP1) A Gy)™

lifting the inverse of the map ¢ A Gy, in the pointed motivic unstable homotopy
category. By composing we end up with the two pointed maps

i, e 882 2 (S(SPH A G) P = (S(BGmy) AGm) P =5 (BGpy A SHHP,
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As a first approximation of the Bott element 8 we consider the analog of the
virtual vector bundle [Op:] — [Op:(—1)] in the pointed motivic unstable homotopy
category

(2.2) =P 842 & (BGpy A SZHIP

In order to form the difference map we use the fact that S%?2 is a (two-fold) simplicial
suspension and therefore a cogroup object in the pointed motivic unstable homotopy
category. Note, however, that ¢ represents the trivial map because it factors
through the base point. By appealing to the motivic model structure it follows
that (2.2) lifts to a ‘strict’ motivic Bott map

52 = (BGpy ASHHTP

between pointed motivic spaces. Here we use the fact that the motivic sphere is
cofibrant in the closed motivic model structure.

The fibrancy caveat above requires us to replace the suspension object X*°BGy, ;-
with a levelwise fibrant motivic spectrum. An arbitrary such replacement need not
preserve commutative monoids. The following lemma addresses this issue.

Lemma 2.2. There exists a lax symmetric monoidal fibrant replacement functor
Id — F on the category of pointed motivic spaces.

Proof. The straightforward simplicial presheaf analog of [5, Theorem 2.1.66] pro-
vides a lax symmetric monoidal fibrant replacement functor Ex™ for the local model
structure on any site of finite type. Moreover, the singular endofunctor Sing, [5]
constructed by means of the standard cosimplicial S-scheme A%, with terms

Ax1 = S Xgpec(z) Spec(Z]xo, . .., xp]/z0 + -+ + 25 — 1)
is strict symmetric monoidal, because it commutes with limits and colimits. Thus
the lemma follows by using the iterated construction
Ex™ o (Ex* o Sing, )% o Ex™
as the fibrant replacement functor [b, Lemma 3.2.6]. In this definition, w denotes

the cardinality of the natural numbers. ]

Corollary 2.3. The motivic symmetric spectrum F(EX°BGy ) obtained by apply-
ing the functor F' levelwise to X°BGy is a commutative monoid.

Proof. The assertion follows immediately by combining Lemma and the fact
that Gy, is a commutative group scheme. ([

Corollary 2.4. There exists a motivic Bott map between pointed motivic spaces
b: $? = F(BGpy A S%Y)

that represents the difference map

_ 4B

in the pointed motivic unstable homotopy category. The map b is central in the

sense that the diagram

F(BGuy)" AS42 2 P(BGp, )" A F(BGm,)! —% F(BGpy )" +!

twistlm lel

bAid

S42 A F(BGmy)"” 2 F(BGmy ) A F(BGy )" —% F(BGp )"
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commutes. Here F(BGum)* is short for F(BGuy A S?*F) and x,,1 denotes the
cyclic permutation (1,2,...,n,n+1).

Proof. This is immediate from Corollary and the commutativity of Gy,. O

With these preliminary results in hand we are ready to construct a strict ring
model for K-theory. In the following we shall adopt constructions for symmetric
spectra given in Schwede’s manuscript [11] to the setting of motivic symmetric
spectra. Let Q2™ denote the right adjoint of the suspension functor — A S?™" on
pointed motivic spaces.

Define KGL” to be the motivic symmetric spectrum with constituent spaces

KGLY = Q42" F(BG . A S4™27).
The group ¥,, acts on $42" and therefore also on F'(BG . AS*™?") via restriction
along the diagonal embedding
Ani Y = 2on
defined for 1 < j <2 and 1 <i < n by setting
Now the ¥,,-action on the (4n, 2n)-loop space KG Lg is defined by conjugation. That
is, for elements o € ¥, and ¢ € KGLEL define

o 6(=) = a(6(o~ (-))).
Let
tnm: F(BGuy A ST ™) A F(BGpy A S?™) = F(BGy . A S2mtmn)mtn)
denote the maps comprising the multiplicative part of the monoid structure on
F(E*BGmy).
Define the multiplication map
(2.3) KGL? AKGLZ — KGLY .
by
FAge pamano (fAG).
The multiplication map (23) is strictly associative due to the strict associativity
of the smash product and the multiplicative structure on F(X*°BGu ).

Moreover, (23)) is ¥, X X,,-equivariant due to the equivariance of the multiplica-
tive structure on F(X*°BGy,, ) and the compatibility relation

A (o) x Ay(o') = Apyn(o x a’)
for the diagonal embeddings A : X — Yok (in our cases of interest k = m,n,m +
Let
F(BGmy A S*™") = KGL), = Q™" F(BGpy A S*™2")
be the adjoint of the composite map of

idAbN

F(BGer A S2n,n) A §4n,2n G227 F(BGer /\52n,n) A F(BGer /\52n,n)

F(BGer A S4n,2n)
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and the map
F(BGpy A S*™?™) = F(BGpy A S
given by the permutation o € ¥, defined by
o) = {1+2(i—1), 1<i<n,
242(k-1), i=n+kl1<k<n.
These maps assemble into a map between motivic symmetric ring spectra,

F(2°BGpn,) — KGL”.
In fact the structure maps

KGL? A §21 — KGLY

and the unit map of KGL? are obtained from the above and the unit map of
F(Z*°BGmn ).

Lemma 2.5. The motivic symmetric spectrum KGL? is a commutative monoid.

Proof. The commutativity constraint

Ham,2n © (f A g) = HU2n,2m © (g A f)

follows because G, is a commutative group scheme. O

3. THE HOMOTOPY TYPE OF KGL?

In this section we finish the proof of our main result and elaborate further on
some closely related results. First we prepare for the comparison of KG L? with the
homotopy colimit of the Bott tower introduced in [12].

Let sh(—) denote the shifted motivic symmetric spectrum functor defined by

sh(E)y, = E14n.

Its structure maps are induced from the ones for E by reindexing. The 3,-action
on the nth term of sh(E) is determined by the injection (1 x —): ¥,, — 14, given
by
1 ;=1
(Ixao)i)y=14" v
o(i—1)+1, i#1L

For our purposes the main application of the shift functor is to introduce the notion
of a semistable motivic symmetric spectrum.
There exists a natural map

(3.1) #(E): S AE — sh(E).
In level n it is defined as the composite map
S2VAE, S En A S 5 Eppq — Ergy
of the twist isomorphism, the nth structure map of E and the cyclic permutation
Xn1=(1,2,...,n,n+1).

Using only the structure maps of E would not give a map of motivic symmetric
spectra. The map ([B]) is not a stable weak equivalence in general.

Definition 3.1. A motivic symmetric spectrum E is called semistable if (31]) is a
stable weak equivalence of underlying (nonsymmetric) motivic spectra.
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Proposition 3.2. Let E be a motivic symmetric spectrum such that for every n
and every permutation o € X, with sign sgn(c) = 1 the action of o on E,, coincides
with the identity in the pointed motivic unstable homotopy category. Then E is
semistable.

Proof. We may assume that E is levelwise fibrant. Then the standard natural
stabilization construction @ gives a stably fibrant replacement of E. Recall that in
level n,

(3.2) Q(E), = colimy(E, = Q*'Epyg — -+ = QFFE, L — -1,

where the colimit is taken over the structure maps. It suffices to show that Q(¢(E))
is a levelwise weak equivalence. The assumption on E implies the composite map

Q2P F(¢(E)n)

Q26 (S22 A\ Ep) Q20k F(sh(E) i)

lcan

QQk+4,k+2F(SQ,1 A Sh(E)n+k+1)
coincides with the canonical map
QQk,kF(SQ,l A En+k) ﬂ QQk+4,k+2F(SQ,1 A En+k+2)

in the pointed motivic unstable homotopy category. The canonical maps denoted by
‘can’ appear implicitly in [82). Thus ¢(E) induces a weak equivalence on colimits

Q(F(S*' NE))y — Q(F(sh(E)))n
for every n. O

Example 3.3. The motivic symmetric spectrum X*°BGy,, is semistable. This
follows from Proposition because the even permutations are homotopic to the
identity map on the motivic spheres. For the same reason, the motivic symmetric
spectrum KGL? is semistable.

Theorem 3.4. Let E be a semistable motivic symmetric spectrum, and let U denote
the right Quillen functor to motivic spectra that forgets the symmetric group actions.
Then the value of the total right derived functor of U at E is U(E).

Proof. We may assume that E is cofibrant and levelwise fibrant. Let R*°E denote
the colimit of the sequence

* 2,1 *
£ 2O, g2 (gh(py) LLECEN),

in the category of motivic symmetric spectra. Here ¢(E)* is the adjoint of the
map ¢(E) defined in I]). By assumption U(¢(E)) is a stable weak equivalence of
motivic spectra. Since U commutes with the functors S?! A — and Q2! forming a
Quillen equivalence on motivic spectra, the derived adjoint
U(E) — Q*!(U(sh(E))) — Q**((Ush(E))"™®)

is a stable weak equivalence. The stably fibrant replacement functor @ commutes
with Q2! due to the finiteness of $*'. Thus the map

Q1 (U(sh(E))) — Q*>'Q(U(sh(E)))

is a stable weak equivalence. It follows that U(¢(E)*) is also a stable weak equiv-
alence of motivic spectra.
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Hence the canonical map E — R*E is a stable weak equivalence of underlying
motivic spectra. By [10, Theorem 18] the same map is also a stable weak equivalence
of motivic symmetric spectra. Since R°°E is stably fibrant in the category of motivic
symmetric spectra by construction, it gives a fibrant replacement of E. The result
follows from this since

U(E) — U(R™E)
is a stable weak equivalence. (I

Define
a: F(2®°BGn,) — Q*?sh(F(X*°BGn_))
to be the adjoint of the map
S42 A F(S°BGmy) — sh(F(X°BGny)).

In level n the latter is the composite map

SY2AF(2°BGuyy )n L F(S®BGm 4 )1 AF(S°BGy )n 2% F(2°BGuy i) 14n-
Corollary 3.5. In the motivic stable homotopy category there exists an isomor-
phism between the homotopy colimit of the diagram of motivic symmetric spectra

425h(a
F(E%BGm,) % Q¥2sh(F(S°BGp,)) @, ...

and the homotopy colimit X°BG . [371] of the Bott tower

e B —2,—1y 00 =218
(3.3) Y*BGpy — X YPBGpy — -
Proof. Due to semistability of F'(X*°BGy, ), established in Example B3] we may
identify Q*2sh(F(X*°BGp4)) with Q¥2F(S%1 A F(X*°BGp4)) and thus with
Q21 F(2*°BGp,) up to stable weak equivalence. The result follows since a lifts
the multiplication by the Bott element map (by construction). ([

Theorem 3.6. The motivic symmetric spectrum KGL? has the homotopy type of
the Bott inverted motivic spectrum X °BGm . [871].

Proof. Corollary identifies the Bott inverted motivic spectrum L°BGy_ [371]
with the homotopy colimit of the diagram

4,2
(3.4) F(E%BGuy) % Q426h(F(S%BG, ) 1@, ...

Since the loop and shift functors appearing in (3.4]) preserve semistability, it follows
that the terms are semistable. Next we shall identify the homotopy colimit of (3.4)
with KGL”. In effect, note that leaving the symmetric groups actions aside, KGL”
is the diagonal of the diagram of motivic symmetric spectra in (3.4]). Example B.3]
and Theorem [B4] show that the value of the right derived functor of U at KGL”
is given by forgetting the group actions on KGL?. Hence there exists an abstract
isomorphism between KGL? and Y*°BGp, [671] in the motivic stable homotopy
category. O

Remark 3.7. By [3], the periodized algebraic cobordism spectrum PMGL admits a
model obtained by inflicting Bott periodicity in the suspension spectrum of BGL .
There exists a strict commutative model for the suspension spectrum of BGL [3]
Proposition 5.4], which is semistable according to Proposition Semistability
is needed and appears to be implicit in the proof of [3| Proposition 5.4]. Thus
the constructions in this paper also produce a strict ring model PMGL? for the



3518 0. RONDIGS, M. SPITZWECK, AND P. A. @STVAER

periodized algebraic cobordism spectrum. Moreover, the determinant map GL —
G, induces a strict ring map PMGL? — KGL”.

Remark 3.8. Applying the arguments in this paper to Kan’s (lax symmetric mo-
noidal) fibrant replacement functor for simplicial sets and the Bott element in
mXN*®BC* yields a commutative symmetric ring spectrum with the homotopy
type of topological unitary K-theory. More generally, for A an abelian compact
Lie group, the same argument applies to the Bott inverted model for A-equivariant
unitary topological K-theory in [13]. We leave further details to the interested
reader.

Next we discuss in broad strokes a motivic functor model for K-theory. There ex-
ists a strict symmetric monoidal functor from motivic symmetric spectra to motivic
functors

i*: MSS — MF
for the base scheme S, which is part of the Quillen equivalence in [2, Theorem 3.32].
Therefore, the image i*KGL? of the motivic symmetric spectrum model for K-
theory yields a commutative monoid in the category of motivic functors. However,
since the motivic symmetric spectrum KGL” need not be cofibrant, it is unclear
whether i*KGL? represents homotopy algebraic K-theory in the homotopy category
of motivic functors. A cofibrant replacement

CKGL? = KGL?

in the category of motivic symmetric ring spectra produces a (possibly noncommu-
tative) motivic symmetric ring spectrum CKGL” such that the associated motivic
ring functor *C' KGL? € MF represents homotopy algebraic K-theory in the ho-
motopy category of motivic functors.

4. MULTIPLICATIVE STRUCTURE

Theorem 4.1. The multiplicative structures on KGL? and KGL coincide in the
motivic stable homotopy category.

Proof. The proof proceeds by showing there is a commutative diagram of monoids

(4.1) KGLP —— °BGn [87]

| |

$°BGmy —— KGL

in the motivic stable homotopy category.
On the level of bigraded homology theories there is a commutative diagram:

(BBGm [871])«+()

l

(X®BGmy)ss( ) — > KGL...()

This diagram lifts uniquely to a commutative diagram of monoids in the motivic
stable homotopy category, as asserted by the right hand side of ([@Il), since for
K-theory there exist no nontrivial phantom maps according to [6, Remark 9.8 (ii),

(iv)].
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On the left hand side of (@), recall that 2°BG,_. — KGL” is a map of motivic
symmetric ring spectra. For the discussion of KGL® — $°BGp. [37"] we shall
use the following model for the homotopy colimit. Let E be the stably fibrant re-
placement of ¥*°BG, , obtained by first applying the functor F' levelwise and then
applying the stabilization functor Q. Now define E[37!] as the diagonal spectrum
of the naturally induced sequence

E-Y 2 E—...

lifting the Bott tower ([B.3). Here =2 ~LE is realized as a shift, so that E[371],, = Eg
and its structure maps are given by multiplication with the Bott element. In level
n the map KGL? — E[3~!] is the canonical map

Q"2 F(BGmy A ST™") = Q20X F(BGy A S7°%) = Eo.

When n = 0 the latter map corresponds via adjointness to the diagonal map in
(@J). The evident monoid structure on BGy,  induces a monoid structure on Eg
and hence a naive multiplication on E[3~!] given by

E[Bil]m A E[ﬂil}n = EO A EO — EO = E[Bil]m—i-n-

Now from the construction of the ring structure on KGL” it follows that KGL® —
E[37!] respects the naive product. |
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