Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The Gabriel-Roiter submodules of simple homogeneous modules


Author: Bo Chen
Journal: Proc. Amer. Math. Soc. 138 (2010), 3415-3424
MSC (2010): Primary 16G20, 16G70
DOI: https://doi.org/10.1090/S0002-9939-2010-10243-5
Published electronically: June 4, 2010
MathSciNet review: 2661542
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \Lambda$ be a connected tame hereditary algebra over an algebraically closed field. We show that if $ \Lambda=kQ$ is of type $ \widetilde{\mathbb{A}}_n$, $ \widetilde{\mathbb{D}}_n$, $ \widetilde{\mathbb{E}}_6$ or $ \widetilde{\mathbb{E}}_7$, then every Gabriel-Roiter submodule of a quasi-simple module of rank $ 1$ (i.e. a simple homogeneous module) has defect $ -1$. In particular, any Gabriel-Roiter submodule of a simple homogeneous module yields a Kronecker pair, and thus induces a full exact embedding of the category $ \mod k\widetilde{\mathbb{A}}_1$ into $ \mod\Lambda$, where $ \widetilde{\mathbb{A}}_1$ is the Kronecker quiver. Consequently, we obtain that all quasi-simple modules are Gabriel-Roiter factor modules.


References [Enhancements On Off] (What's this?)

  • 1. B. Chen, The Gabriel-Roiter measure for representation-finite hereditary algebras. J. Algebra 309(2007), 292-317. MR 2301241 (2007m:16013)
  • 2. B. Chen, The Auslander-Reiten sequences ending at Gabriel-Roiter factor modules over tame hereditary algebras. J. Algebra Appl. 6(2007), 951-963. MR 2376793 (2008m:16035)
  • 3. B. Chen, The Gabriel-Roiter measure for $ \widetilde{\mathbb{A}}_n$. J. Algebra 320(2008), 2891-2906. MR 2442001 (2009h:16013)
  • 4. B. Chen, Comparison of Auslander-Reiten theory and Gabriel-Roiter measure approach to the module categories of tame hereditary algebras. Comm. Algebra 36(2008), 4186-4200. MR 2460409 (2009j:16018)
  • 5. V. Dlab; C. M. Ringel, Indecomposable representations of graphs and algebras. Mem. Amer. Math. Soc. 6(1976), no. 173. MR 0447344 (56:5657)
  • 6. D. Happel; C. M. Ringel, Tilted algebras. Trans. Amer. Math. Soc. 274(1982), 399-443. MR 675063 (84d:16027)
  • 7. P. Gabriel, Indecomposable representations. II, Symposia Mathematica. Vol. XI, Academic Press, London, 1973, 81-104. MR 0340377 (49:5132)
  • 8. C. M. Ringel, The Gabriel-Roiter measure. Bull. Sci. Math. 129(2005), 726-748. MR 2172139 (2006g:16039)
  • 9. C. M. Ringel, Foundation of the representation theory of Artin algebras, using the Gabriel-Roiter measure. Proceedings of the 36th Symposium on Ring Theory and Representation Theory, Vol. 2, 1-19, Symp. Ring Theory Represent. Theory Organ. Comm., Yamanashi, 2004. MR 2077022 (2005g:16021)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 16G20, 16G70

Retrieve articles in all journals with MSC (2010): 16G20, 16G70


Additional Information

Bo Chen
Affiliation: Hausdorff Center for Mathematics, Universität Bonn, 53115 Bonn, Germany
Address at time of publication: Mathematisches Institut, Universität zu Köln, Weyertal 86–90, 50931 Köln, Germany
Email: mcebbchen@googlemail.com

DOI: https://doi.org/10.1090/S0002-9939-2010-10243-5
Keywords: Tame hereditary algebras, simple homogeneous modules, defect, Gabriel-Roiter measure.
Received by editor(s): October 7, 2008
Received by editor(s) in revised form: August 7, 2009, and September 28, 2009
Published electronically: June 4, 2010
Dedicated: Dedicated to my wife, Qi, and my twin daughters, Yining and Yimeng
Communicated by: Birge Huisgen-Zimmermann
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society