Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Arithmetic rigidity

Authors: Wayne Raskind and Matei Stroila
Journal: Proc. Amer. Math. Soc. 138 (2010), 3405-3413
MSC (2010): Primary 19F27, 19E15
Published electronically: June 3, 2010
MathSciNet review: 2661541
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove an arithmetic analogue of rigidity results of Suslin and Beilinson, and then give some applications to countability of certain motivic cohomology groups of varieties over the complex numbers, assuming a finite generation of these groups for varieties over finitely generated fields.

References [Enhancements On Off] (What's this?)

  • [Be] A.A. Beilinson, Higher regulators and values of L-functions, J. of Soviet Math. 30 (1985) 2036-2070. MR 760999 (86h:11103)
  • [Bl] S. Bloch, Algebraic cycles and higher K-theory, Advances in Math. 61 (1986) 267-304. MR 852815 (88f:18010)
  • [Bo] A. Borel, Stable real cohomology of arithmetic groups, Annales Sci. École Normale Supérieure 7 (1974) 235-272. MR 0387496 (52:8338)
  • [CTR1] J.-L. Colliot-Thélène and W. Raskind, $ {\mathcal K}_2$-cohomology and the second Chow group, Math. Annalen 270 (1985) 165-199. MR 771978 (86m:14005)
  • [CTR2] J.-L. Colliot-Thélène and W. Raskind, Groupe de Chow de codimension deux des variétés algébriques sur les corps de nombres: un théorème de finitude pour la torsion, Inventiones Math. 105 (1991) 241-265. MR 1115542 (92j:14009)
  • [EV] H. Esnault and E. Viehweg, Deligne-Beĭlinson cohomology. Beĭlinson's conjectures on special values of $ L$-functions, 43-91, Perspect. Math., 4, Academic Press, Boston, MA, 1988. MR 944991 (89k:14008)
  • [GT] H. Gillet and R.W. Thomason, On the K-theory of strictly Henselian local rings and a theorem of Suslin, J. Pure and Applied Algebra 34 (1984) 241-254. MR 772059 (86e:18014)
  • [J] U. Jannsen, Continuous étale cohomology, Math. Annalen 280 (1988) 207-245. MR 929536 (89a:14022)
  • [Le] M. Levine, The indecomposable $ K_3$ of fields, Annales Sci. École Normale Supérieure 22 (1989) 255-344. MR 1005161 (91a:11061)
  • [MS] A.S. Merkur'ev and A. Suslin, The group $ K_3$ for a field, Izv. Akad. Nauk. SSSR 54 (1990) 339-356, English translation in Mathematics of the USSR: Izvestia 36 (1990) 541-565. MR 1072694 (91g:19002)
  • [Mi] J.S. Milne, Étale Cohomology, Princeton Mathematical Series, Volume 33, Princeton University Press, 1980. MR 559531 (81j:14002)
  • [M] S. Müller-Stach, Constructing indecomposable motivic cohomology classes on algebraic surfaces, J. Algebraic Geometry 6 (1997) 513-543. MR 1487225 (99k:14016)
  • [R] W. Raskind, Higher $ \ell$-adic Abel-Jacobi mappings and filtrations on Chow groups, Duke J. Math. 78 (1995) 33-57. MR 1328751 (96d:14009)
  • [Su1] A.A.Suslin, On the K-theory of algebraically closed fields, Inventiones Math. (1983) 241-245. MR 714090 (85h:18008a)
  • [Su2] A. A. Suslin, Homology of $ \operatorname{GL}\sb{n}$, characteristic classes and Milnor $ K$-theory. (Russian) Algebraic geometry and its applications. Trudy Mat. Inst. Steklov. 165 (1984), 188-204, English translation in Algebraic $ K$-theory, number theory, geometry and analysis (Bielefeld, 1982), 357-375, Lecture Notes in Math., 1046, Springer, Berlin, 1984. MR 752941 (86f:11090a); MR 752941 (86f:11090b)
  • [Su3] A.A. Suslin, Torsion in $ K_2$ of fields, J. of K-Theory 1 (1987) 1-29. MR 899915 (89a:11123)
  • [V] V. Voevodsky, Triangulated categories of motives over a field, in Cycles, Transfers and Motivic Homology Theories, E. Friedlander, A. Suslin and V. Voevodsky, editors, Annals of Mathematics Studies, Volume 143, Princeton University Press, 1999. MR 1764202

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 19F27, 19E15

Retrieve articles in all journals with MSC (2010): 19F27, 19E15

Additional Information

Wayne Raskind
Affiliation: School of Mathematical and Statistical Sciences, Arizona State University, P.O. Box 871804, Tempe, Arizona 85287-1804

Matei Stroila
Affiliation: Emerging Technologies, NAVTEQ, 425 West Randolph Street, Chicago, Illinois 60606

Received by editor(s): November 19, 2008
Received by editor(s) in revised form: August 23, 2009
Published electronically: June 3, 2010
Additional Notes: The first author was partially supported by NSA grant H98230-07-1-0041
Communicated by: Ted Chinburg
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society