Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Constantive Mal'cev clones on finite sets are finitely related

Author: Erhard Aichinger
Journal: Proc. Amer. Math. Soc. 138 (2010), 3501-3507
MSC (2010): Primary 08A40
Published electronically: May 14, 2010
MathSciNet review: 2661550
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that on a finite set there are at most countably many constantive clones that contain a Mal'cev operation, and each such clone can be described by a single finitary relation. Thus, modulo polynomial equivalence and renaming of the elements, there are only countably many finite algebras that contain a Mal'cev term.

References [Enhancements On Off] (What's this?)

  • 1. I. Ágoston, J. Demetrovics, and L. Hannák, On the number of clones containing all constants (a problem of R. McKenzie), Lectures in universal algebra (Szeged, 1983), Colloq. Math. Soc. János Bolyai, vol. 43, North-Holland, Amsterdam, 1986, pp. 21-25.
  • 2. E. Aichinger and N. Mudrinski, Polynomial clones of Mal'cev algebras with small congruence lattices, Acta Math. Hungar. 124 (2010), no. 4, 315-333.
  • 3. M. Aschenbrenner and R. Hemmecke, Finiteness theorems in stochastic integer programming, Found. Comput. Math. 7 (2007), no. 2, 183-227. MR 2324416 (2008c:90031)
  • 4. A. A. Bulatov, Polynomial clones containing the Mal'tsev operation of the groups $ \mathbb{Z}\sb {p\sp 2}$ and $ \mathbb{Z}\sb p\times\mathbb{Z}\sb p$, Mult.-Valued Log. 8 (2002), no. 2, 193-221. MR 1957653 (2004a:08001)
  • 5. A. A. Bulatov and P. M. Idziak, Counting Mal'tsev clones on small sets, Discrete Math. 268 (2003), no. 1-3, 59-80. MR 1982389 (2004i:08003)
  • 6. S. Burris and H. P. Sankappanavar, A course in universal algebra, Springer, New York-Heidelberg-Berlin, 1981. MR 648287 (83k:08001)
  • 7. G. Higman, Ordering by divisibility in abstract algebras, Proc. London Math. Soc. (3) 2 (1952), 326-336. MR 0049867 (14:238e)
  • 8. D. Hobby and R. McKenzie, The structure of finite algebras, Contemporary Mathematics, vol. 76, American Mathematical Society, 1988. MR 958685 (89m:08001)
  • 9. P. M. Idziak, Clones containing Mal'tsev operations, Internat. J. Algebra Comput. 9 (1999), no. 2, 213-226. MR 1703074 (2000e:08007)
  • 10. K. Kaarli and A. F. Pixley, Polynomial completeness in algebraic systems, Chapman & Hall/CRC, Boca Raton, Florida, 2001. MR 1888967 (2003a:08001)
  • 11. P. Mayr, Polynomial clones on squarefree groups, Internat. J. Algebra Comput. 18 (2008), no. 4, 759-777. MR 2428154 (2009f:08003)
  • 12. -, Mal'cev algebras with supernilpotent centralizers, Algebra Universalis, accepted for publication.
  • 13. R. McKenzie, K. Kearnes, E. Kiss, and A. Szendrei, Sixty-four problems in universal algebra,, 2001, Problems posed at ``A course in tame congruence theory'', Paul Erdős Summer Research Center, Budapest, in July 2001.
  • 14. R. N. McKenzie, G. F. McNulty, and W. F. Taylor, Algebras, lattices, varieties, volume I, Wadsworth & Brooks/Cole Advanced Books & Software, Monterey, California, 1987. MR 883644 (88e:08001)
  • 15. E. C. Milner, Basic wqo- and bqo-theory, Graphs and order (Banff, Alta., 1984), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 147, Reidel, Dordrecht, 1985, pp. 487-502. MR 818505 (87h:04004)
  • 16. R. Pöschel and L. A. Kalužnin, Funktionen- und Relationenalgebren, Mathematische Monographien [Mathematical Monographs], vol. 15, VEB Deutscher Verlag der Wissenschaften, Berlin, 1979, Ein Kapitel der diskreten Mathematik [A chapter in discrete mathematics]. MR 543839 (81f:03075)
  • 17. Á. Szendrei, Clones in universal algebra, Séminaire de Mathématiques Supérieures [Seminar on Higher Mathematics], vol. 99, Presses de l'Université de Montréal, Montreal, QC, 1986. MR 859550 (87m:08005)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 08A40

Retrieve articles in all journals with MSC (2010): 08A40

Additional Information

Erhard Aichinger
Affiliation: Institut für Algebra, Johannes Kepler Universität Linz, Altenbergerstraße 69, 4040 Linz, Austria

Received by editor(s): August 24, 2009
Received by editor(s) in revised form: January 19, 2010
Published electronically: May 14, 2010
Communicated by: Julia Knight
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society