Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Operator monotone functions, positive definite kernels and majorization


Author: Mitsuru Uchiyama
Journal: Proc. Amer. Math. Soc. 138 (2010), 3985-3996
MSC (2010): Primary 47A56; Secondary 15A39, 47B34
DOI: https://doi.org/10.1090/S0002-9939-10-10386-4
Published electronically: May 10, 2010
MathSciNet review: 2679620
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ f(t)$ be a real continuous function on an interval, and consider the operator function $ f(X)$ defined for Hermitian operators $ X$. We will show that if $ f(X)$ is increasing w.r.t. the operator order, then for $ F(t)=\int f(t)dt$ the operator function $ F(X)$ is convex. Let $ h(t)$ and $ g(t)$ be $ C^1$ functions defined on an interval $ I$. Suppose $ h(t)$ is non-decreasing and $ g(t)$ is increasing. Then we will define the continuous kernel function $ K_{h,\;g}$ by $ K_{h,\;g}(t,s)=(h(t)-h(s))/(g(t)-g(s))$, which is a generalization of the Löwner kernel function. We will see that it is positive definite if and only if $ h(A)\leqq h(B)$ whenever $ g(A)\leqq g(B)$ for Hermitian operators $ A, B$, and we give a method to construct a large number of infinitely divisible kernel functions.


References [Enhancements On Off] (What's this?)

  • 1. J. Bendat and S. Shermann, Monotone and convex operator functions, Trans. Amer. Math. Soc., 79(1965)58-71. MR 0082655 (18:588b)
  • 2. R. Bhatia, Matrix Analysis, Springer, 1996. MR 1477662 (98i:15003)
  • 3. R. Bhatia, Infinitely divisible matrices, Amer. Math. Monthly, 113(2006)221-235. MR 2204486 (2006j:15063)
  • 4. R. Bahtia and H. Kosaki, Mean matrices and infinite divisibility, Linear Algebra Appl., 424(2007)36-54. MR 2324373 (2008d:15059)
  • 5. R. Bahtia and T. Sano, Loewner matrices and operator convexity, Math. Ann., 344(2009)703-716. MR 2501306
  • 6. W.F.Donoghue, Monotone Matrix Functions and Analytic Continuation, Springer-Verlag, 1974. MR 0486556 (58:6279)
  • 7. C. H. Fitzgerald, On analytic continuation to a Schlicht function, Proc. Amer. Math. Soc., 18(1967)788-792. MR 0219712 (36:2791)
  • 8. C. Loewner, On Schlicht-monotone functions of higher order, J. Math. Anal. Appl., 14(1996)320-325. MR 0190354 (32:7767)
  • 9. F. Hansen and G. K. Pedersen, Jensen's inequality for operators and Löwner's theorem, Math. Ann., 258(1982)229-241. MR 1513286
  • 10. R. A. Horn, The theory of infinitely divisible matrices and kernels, Trans. Amer. Math. Soc., 136(1969)269-286. MR 0264736 (41:9327)
  • 11. R. A. Horn, On boundary values of a Schlicht mapping, Proc. Amer. Math. Soc., 18(1967)782-787. MR 0219713 (36:2792)
  • 12. R. A. Horn, Schlicht mapping and infinitely divisible kernels, Pacific J. of Math., 38(1971)423-430. MR 0310208 (46:9310)
  • 13. R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, 1985. MR 832183 (87e:15001)
  • 14. F. Krauss, Über konvexe Matrixfunktionen, Math. Zeit., 41(1936)18-42. MR 1545602
  • 15. M. Uchiyama, Inverse functions of polynomials and orthogonal polynomials as operator monotone functions, Trans. Amer. Math. Soc., 355(2003)4111-4123. MR 1990577 (2004g:47024)
  • 16. M. Uchiyama, A new majorization between functions, polynomials, and operator inequalities, J. Funct. Anal., 231(2006) no. 1, 221-244. MR 2190170 (2007b:47048)
  • 17. M. Uchiyama, A new majorization between functions, polynomials, and operator inequalities II, J. Math. Soc. Japan, 60(2008) no. 1, 291-310 MR 2392012 (2009h:47030)
  • 18. M. Uchiyama, A new majorization induced by matrix order, Operator Theory: Advances and Applications, 187(2008)211-216.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 47A56, 15A39, 47B34

Retrieve articles in all journals with MSC (2010): 47A56, 15A39, 47B34


Additional Information

Mitsuru Uchiyama
Affiliation: Department of Mathematics, Interdisciplinary Faculty of Science and Engineering, Shimane University, Matsue City, Shimane 690-8504, Japan
Email: uchiyama@riko.shimane-u.ac.jp

DOI: https://doi.org/10.1090/S0002-9939-10-10386-4
Keywords: Positive definite kernel, pick function, matrix order, L\"{o}wner theorem, operator monotone function, majorization, infinitely divisible kernel
Received by editor(s): September 1, 2009
Received by editor(s) in revised form: October 2, 2009, December 14, 2009, and January 17, 2010
Published electronically: May 10, 2010
Communicated by: Nigel J. Kalton
Article copyright: © Copyright 2010 American Mathematical Society

American Mathematical Society