STABILITY CRITERION FOR CONVOLUTION-DOMINATED INFINITE MATRICES

QIYU SUN

(Communicated by Marius Junge)

Abstract. Let \(\ell^p \) be the space of all \(p \)-summable sequences on \(\mathbb{Z} \). An infinite matrix is said to have \(\ell^p \)-stability if it is bounded and has bounded inverse on \(\ell^p \). In this paper, a practical criterion is established for the \(\ell^p \)-stability of convolution-dominated infinite matrices.

1. Introduction

Let \(C \) be the Gohberg-Baskakov-Sjöstrand class of infinite matrices \(A := (a(j, j'))_{j, j' \in \mathbb{Z}} \) with
\[
\|A\|_C = \sum_{k \in \mathbb{Z}} \sup_{j-j'=k} |a(j, j')| < \infty.
\]
Let \(\ell^p := \ell^p(\mathbb{Z}) \) be the set of all \(p \)-summable sequences on \(\mathbb{Z} \) with the standard norm \(\| \cdot \|_p \). An infinite matrix \(A := (a(j, j'))_{j, j' \in \mathbb{Z}} \in C \) defines a bounded linear operator on \(\ell^p, 1 \leq p \leq \infty \), in the sense that
\[
(1.1) \quad Ac = \left(\sum_{j' \in \mathbb{Z}} a(j, j')c(j') \right)_{j \in \mathbb{Z}},
\]
where \(c = (c(j))_{j \in \mathbb{Z}} \in \ell^p \). Given a summable sequence \(h = (h(j))_{j \in \mathbb{Z}} \in \ell^1 \), define the convolution operator \(C_h \) on \(\ell^p, 1 \leq p \leq \infty \), by
\[
(1.2) \quad C_h : \ell^p \ni (b(j))_{j \in \mathbb{Z}} \mapsto \left(\sum_{k \in \mathbb{Z}} h(j-k)b(k) \right)_{j \in \mathbb{Z}} \in \ell^p.
\]
Observe that the linear operator associated with an infinite matrix \(A \in C \) is dominated by a convolution operator in the sense that
\[
(1.3) \quad \|(Ac)(j)\| \leq (C_h c)(j) := \sum_{j' \in \mathbb{Z}} h(j-j')|c(j')|, \quad j \in \mathbb{Z},
\]
for any sequence \(c = (c(j))_{j \in \mathbb{Z}} \in \ell^p, 1 \leq p \leq \infty \), where \(|c| = (|c(j)|)_{j \in \mathbb{Z}} \) and the sequence \(\sup_{j-j'=k} |a(j, j')|_{k \in \mathbb{Z}} \) can be chosen to be the sequence \(h = (h(j))_{j \in \mathbb{Z}} \) in (1.3). So infinite matrices in the set \(C \) are said to be convolution-dominated.

Convolution-dominated infinite matrices were introduced by Gohberg, Kaashoek, and Woerdeman [12] as a generalization of Toeplitz matrices. They showed that the class \(C \) equipped with the standard matrix multiplication and the above norm \(\| \cdot \|_C \)
is an inverse-closed Banach subalgebra of $\mathcal{B}(lp)$ for $p = 2$. Here $\mathcal{B}(lp)$, $1 \leq p \leq \infty$, is the space of all bounded linear operators on lp with the standard operator norm, and a subalgebra A of a Banach algebra B is said to be inverse-closed if when an operator $T \in A$ has an inverse T^{-1} in B, then $T^{-1} \in A$ ([7] [11] [21]). The inverse-closed property for convolution-dominated infinite matrices was rediscovered by Sjöstrand [25] with a completely different proof and an application to a deep theorem about pseudodifferential operators. Recently Shin and Sun [23] generalized Gohberg, Kaashoek and Woerdeman’s result and proved that the class \mathcal{C} is an inverse-closed Banach subalgebra of $\mathcal{B}(lp)$ for any $1 \leq p \leq \infty$. The readers may refer to [5] [10] [20] [23] [25] [27] and the references therein for related results and various generalizations on the inverse-closed property for convolution-dominated infinite matrices.

Convolution-dominated infinite matrices arise and have been used in the study of spline approximation ([8] [9]), wavelets and affine frames ([6] [18]), Gabor frames ([1], [3], [14], [15], [16], [18], [19], [23], [24], [25]) and the references therein. Examples of convolution-dominated infinite matrices include the infinite matrix $(a(j-j'))_{j,j'\in\mathbb{Z}}$ associated with convolution operators and the infinite matrix $(a(j-j')e^{-2\pi\sqrt{-1}j\theta(j-j')})_{j,j'\in\mathbb{Z}}$ associated with twisted convolution operators, where $\theta \in \mathbb{R}$ and the sequence $a = (a(j))_{j\in\mathbb{Z}}$ satisfies $\sum_{j\in\mathbb{Z}}|a(j)| < \infty$ ([1] [14] [19] [27] [29]).

A convolution-dominated infinite matrix A is said to have lp-stability if there are two positive constants C_1 and C_2 such that

$$C_1\|c\|_p \leq \|Ac\|_p \leq C_2\|c\|_p \quad \text{for all } c \in lp.$$

The lp-stability is one of basic assumptions for infinite matrices arising in the study of spline approximation, Gabor time-frequency analysis, nonuniform sampling, and algebra of pseudo-differential operators; see [1] [3] [6] [8] [9] [10] [14] [15] [16] [18] [19] [23] [24] [25] [26] [27] [29] and the references therein. Practical criteria for the lp-stability of a convolution-dominated infinite matrix will play important roles in the further study of those topics.

However, up to the knowledge of the author, little is known about practical criteria for the lp-stability of an infinite matrix. For an infinite matrix $A = (a(j-j'))_{j,j'\in\mathbb{Z}}$ associated with convolution operators, there is a very useful criterion for its lp-stability. It states that A has lp-stability if and only if the Fourier series $\hat{a}(\xi) := \sum_{j\in\mathbb{Z}}a(j)e^{-ij\xi}$ of the generating sequence $a = (a(j))_{j\in\mathbb{Z}} \in lp$ does not vanish on the real line, i.e.,

$$\hat{a}(\xi) \neq 0 \quad \text{for all } \xi \in \mathbb{R}.$$

Applying this criterion for the lp-stability, one concludes that the spectrum $\sigma_p(C_a)$ of the convolution operator C_a as an operator on lp is independent of $1 \leq p \leq \infty$, i.e.,

$$\sigma_p(C_a) = \sigma_q(C_a) \quad \text{for all } 1 \leq p, q \leq \infty;$$

see [4] [17] [22] [24] and the references therein for the discussion on spectrum of various convolution operators. Applying the above criterion again, together with the classical Wiener’s lemma ([29]), it follows that the inverse of an lp-stable convolution operator C_a is a convolution operator C_b associated with another summable sequence b.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
For a convolution-dominated infinite matrix \(A = (a(j, j'))_{j,j' \in \mathbb{Z}} \), a popular sufficient condition for its \(\ell^1 \)-stability and \(\ell^\infty \)-stability is that \(A \) is diagonal-dominated, i.e.,

\[
(1.7) \quad \inf_{j \in \mathbb{Z}} \left(|a(j, j)| - \max \left(\sum_{j' \neq j} |a(j, j')|, \sum_{j' \neq j} |a(j', j)| \right) \right) > 0.
\]

In this paper, we provide a practical criterion for the \(\ell^p \)-stability of convolution-dominated infinite matrices. We show that a convolution-dominated infinite matrix \(A \) has \(\ell^p \)-stability if and only if it has certain “diagonal-blocks-dominated” property (see Theorem 2.1 for the precise statement).

2. Main theorem

To state our criterion for the \(\ell^p \)-stability of convolution-dominated infinite matrices, we introduce two concepts. Given an infinite matrix \(A \), define the truncation matrices \(A_s, s \geq 0 \), by

\[
A_s = (a(i, j)\chi_{(-s, s)}(i - j))_{i,j \in \mathbb{Z}},
\]

where \(\chi_E \) is the characteristic function on a set \(E \). Given \(y \in \mathbb{R} \) and \(1 \leq N \in \mathbb{Z} \), define the operator \(\chi^N_y \) on \(\ell^p \) by

\[
\chi^N_y : \ell^p \ni (c(j))_{j \in \mathbb{Z}} \longmapsto (c(j)\chi_{(-N,N)}(j - y))_{j \in \mathbb{Z}} \in \ell^p.
\]

The operator \(\chi^N_y \) is a diagonal matrix \(\text{diag}(\chi_{(-N,N)}(j - y))_{j \in \mathbb{Z}} \).

Theorem 2.1. Let \(1 \leq p \leq \infty \), and let \(A \) be a convolution-dominated infinite matrix in the class \(\mathcal{C} \). Then the following statements are equivalent:

(i) The infinite matrix \(A \) has \(\ell^p \)-stability.

(ii) There exist a positive constant \(C_0 \) and a positive integer \(N_0 \) such that

\[
(2.1) \quad \|\chi^N_{-n} A \chi^n_{-n} c\|_p \geq C_0 \|\chi^N_{-n} c\|_p, \quad c \in \ell^p,
\]

hold for all integers \(N \geq N_0 \) and \(n \in \mathbb{Z} \).

(iii) There exist a positive integer \(N_0 \) and a positive constant \(\alpha \) satisfying

\[
(2.2) \quad \alpha > 2(5 + 2^{1-p})^{1/p} \inf_{0 \leq s \leq N_0} (\|A - A_s\| + \frac{8}{N_0} \|A\|_c)
\]

such that

\[
(2.3) \quad \|\chi^{N_0}_{-n} A \chi^{N_0}_{-n} c\|_p \geq \alpha \|\chi^{N_0}_{-n} c\|_p, \quad c \in \ell^p,
\]

hold for all \(n \in N_0 \mathbb{Z} \).

Taking \(N_0 = 1 \) in (2.2) and (2.3), we obtain a sufficient condition \((2.4) \), which is a strong version of the diagonal-domination condition \((1.7) \), for the \(\ell^\infty \)-stability of a convolution-dominated infinite matrix.

Corollary 2.2. Let \(A = (a(j, j'))_{j,j' \in \mathbb{Z}} \) be a convolution-dominated infinite matrix in the class \(\mathcal{C} \). If

\[
(2.4) \quad \inf_{j \in \mathbb{Z}} \left(|a(j, j)| - 2 \sum_{0 \neq k \in \mathbb{Z}} \sup_{j' = k} |a(j, j')| \right) > 0,
\]

then \(A \) has \(\ell^\infty \)-stability.
We say that an infinite matrix $A = (a(i,j))_{i,j \in \mathbb{Z}}$ is a band matrix if $a(i,j) = 0$ for all $i,j \in \mathbb{Z}$ satisfying $j > i + k$ or $j < i - k$. The quantity $2k+1$ is the bandwidth of the matrix A. For a band matrix A with bandwidth $2k+1$, $A - A_s$ is the zero matrix if $s > k$. Therefore for $N > k$,
\[
\inf_{0 \leq s \leq N} \left(\|A - A_s\|_C + \frac{s}{N} \|A\|_C \right) \leq \frac{k}{N} \|A\|_C.
\]
This, together with Theorem 2.1, gives the following sufficient condition for a band matrix to have ℓ^p-stability.

Corollary 2.3. Let $1 \leq p \leq \infty$, and let A be a convolution-dominated band matrix in the class \mathcal{C} with bandwidth $2k+1$. If there exists an integer $N_0 > k$ such that
\[
\|A\chi_{N_0} c\|_p \geq \gamma \|\chi_{N_0} c\|_p, \quad c \in \ell^p,
\]
holds for some constant γ strictly larger than $2(5 + 2^{1-p})^{1/p}k\|A\|_C/N_0$, then A has ℓ^p-stability.

If we further assume that the infinite matrix A in Corollary 2.3 has the form $A = (a(j-j'))_{j,j' \in \mathbb{Z}}$ for some finite sequence $a = (a(j))_{j \in \mathbb{Z}}$ satisfying $a(j) = 0$ for $|j| > k$, then $\|A\|_C = \sum_{|j| \leq k} |a(j)|$ and the condition (2.5) can be reformulated as follows:
\[
\|A\|_C \geq \gamma \kappa_{N_0} \left(\sum_{|j| \leq k} |a(j)| \right), \quad c \in \mathbb{R}^{2N_0+1},
\]
holds for some $\gamma > 2(5 + 2^{1-p})^{1/p}$, where
\[
\hat{A}_{N_0} = (a(j-j'))_{-N_0 - k \leq j \leq N_0 + k, -N_0 \leq j' \leq N_0}
\]
and
\[
\|c\|_p = \left\{ \begin{array}{ll}
(\sum_{j=-k_1}^{k_2} |c(j)|^p)^{1/p} & \text{if } 1 \leq p < \infty, \\
\sup_{-k_1 \leq j \leq k_2} |c(j)| & \text{if } p = \infty,
\end{array} \right.
\]
for $c = (c(-k_1), \ldots, c(0), \ldots, c(k_2))^T \in \mathbb{R}^{k_1 + k_2 + 1}$. As a conclusion from (2.6) and (2.7), we see that if $A = (a(j-j'))_{j,j' \in \mathbb{Z}}$ does not have ℓ^p-stability, then for any large integer N,
\[
\inf_{0 \neq c \in \mathbb{R}^{2N+1}} \frac{\|\hat{A}_N c\|_p}{\|c\|_p} \leq \frac{2(5 + 2^{1-p})^{1/p} k}{N} \left(\sum_{|j| \leq k} |a(j)| \right).
\]
For the special case $p = 2$, the above inequality (2.8) can be interpreted as the minimal eigenvalue of $(\hat{A}_N)^T \hat{A}_N$ is less than or equal to $\frac{\sqrt{2}k}{N^2} (\sum_{|j| \leq k} |a(j)|)^2$, and it can also be rewritten as
\[
\inf_{0 \neq P_N \in \Pi_N} \left(\frac{\int_{-\pi}^{\pi} |\hat{a}(\xi)|^2 |P_N(\xi)|^2 d\xi}{\int_{-\pi}^{\pi} |P_N(\xi)|^2 d\xi} \right)^{1/2} \leq \frac{\sqrt{2}k}{N} \left(\sum_{|j| \leq k} |a(j)| \right),
\]
where $\hat{a}(\xi) = \sum_{j \in \mathbb{Z}} a(j)e^{-ij\xi}$ and Π_N is the set of all trigonometrical polynomials of degree at most N.

If the sequence $a = (a(j))_{j \in \mathbb{Z}}$ satisfies $a(0) = 1, a(-1) = -1$, and $a(j) = 0$ otherwise, then the bandwidth of the infinite matrix $A = (a(j-j'))_{j,j' \in \mathbb{Z}}$ is equal to 3, the norm $\|A\|_C$ of the associated infinite matrix A is equal to 2,
\(\tilde{A}_N = \begin{pmatrix} -1 & 0 & 0 & \ldots & 0 & 0 \\ 1 & -1 & 0 & \ldots & 0 & 0 \\ 0 & 1 & -1 & \ldots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \ldots & 1 & -1 \\ 0 & 0 & 0 & \ldots & 0 & 1 \end{pmatrix}, \)

and

\[
\inf_{0 \neq c \in \mathbb{R}^{2N+1}} \frac{\| \tilde{A}_N c \|_p}{\|c\|_p} \geq \frac{1}{N+1},
\]

where the last inequality holds since the matrix

\[
\tilde{B}_N := \begin{pmatrix} -1 & 0 & 0 & \ldots & 0 & 0 & 0 & \ldots & 0 & 0 \\ -1 & -1 & 0 & \ldots & 0 & 0 & 0 & \ldots & 0 & 0 \\ -1 & -1 & -1 & \ldots & 0 & 0 & 0 & \ldots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ -1 & -1 & -1 & \ldots & -1 & 0 & 0 & \ldots & 0 & 0 \\ 0 & 0 & 0 & \ldots & 0 & 0 & 1 & 1 & \ldots & 1 \\ 0 & 0 & 0 & \ldots & 0 & 0 & 0 & 1 & \ldots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \ldots & 0 & 0 & 0 & \ldots & 1 & 1 \\ 0 & 0 & 0 & \ldots & 0 & 0 & 0 & \ldots & 0 & 1 \end{pmatrix}
\]

is a left inverse of the matrix \(\tilde{A}_N \). Therefore the order \(N^{-1} \) in (2.8) cannot be improved in general, but the author believes that the bound constant \(2(5+2^{1-p})^{1/p} \) in (2.2) and (2.8) is not optimal and could be improved.

3. Proof

We say that a discrete subset \(\Lambda \) of \(\mathbb{R}^d \) is relatively-separated if

\[
R(\Lambda) := \sup_{x \in \mathbb{R}^d} \sum_{\lambda \in \Lambda} \chi_{[-1/2,1/2]^d}(x) < \infty
\]

(\cite{1, 23, 27}). Clearly, the set \(\mathbb{Z} \) of all integers is a relatively-separated subset of \(\mathbb{R} \) with

\[
R(\mathbb{Z}) = 1.
\]

Given a discrete set \(\Lambda \), let \(\ell^p(\Lambda) \) be the set of all \(p \)-summable sequences on the set \(\Lambda \) with standard norm \(\| \cdot \|_{\ell^p(\Lambda)} \) or \(\| \cdot \|_p \) for brevity.

Given two relatively-separated subsets \(\Lambda \) and \(\Lambda' \) of \(\mathbb{R}^d \), define

\[
C(\Lambda, \Lambda') = \left\{ A := (a(\lambda, \lambda'))_{\lambda \in \Lambda, \lambda' \in \Lambda'} \mid \|A\|_{C(\Lambda, \Lambda')} < \infty \right\},
\]

where

\[
\|A\|_{C(\Lambda, \Lambda')} = \sum_{k \in \mathbb{Z}^d} \sup_{\lambda \in \Lambda, \lambda' \in \Lambda'} |a(\lambda, \lambda')| \chi_{k+[-1/2,1/2]^d}(\lambda - \lambda').
\]

It is obvious that

\[
C(\mathbb{Z}, \mathbb{Z}) = C.
\]
Given an infinite matrix \(A = (a(\lambda, \lambda'))_{\lambda, \lambda' \in \Lambda'} \), define its truncation matrices \(A_s, s \geq 0 \), by

\[
A_s = \left(a(\lambda, \lambda') \chi_{(-s,s)^d}(\lambda - \lambda') \right)_{\lambda, \lambda' \in \Lambda'}.
\]

For any \(y \in \mathbb{R}^d \) and a positive integer \(N \), define the operator \(\chi_N^y \) on \(\ell^p(\Lambda) \) by

\[
(\chi_N^y)_N = \mathcal{O} \subset \ell^p(\Lambda) \quad \text{for all } c \in \ell^p(\Lambda'),
\]

where \(\mathcal{O} \) are relatively-separated subsets of \(\mathbb{R}^d \).

In this section, we establish the following criterion for the \(\ell^p \)-stability of infinite matrices in the class \(C(\Lambda, \Lambda') \), which is a slight generalization of Theorem 2.1 by (3.2) and (3.3).

Theorem 3.1. Let \(1 \leq p \leq \infty \), the subsets \(\Lambda, \Lambda' \) of \(\mathbb{R}^d \) be relatively-separated, and the infinite matrix \(A \) belong to \(C(\Lambda, \Lambda') \). Then the following statements are equivalent to each other:

(i) The infinite matrix \(A \) has \(\ell^p \)-stability, i.e., there exist positive constants \(C_1 \) and \(C_2 \) such that

\[
C_1 \| c \|_{\ell^p(\Lambda')} \leq \| Ac \|_{\ell^p(\Lambda)} \leq C_2 \| c \|_{\ell^p(\Lambda')} \quad \text{for all } c \in \ell^p(\Lambda').
\]

(ii) There exist a positive constant \(C_0 \) and a positive integer \(N_0 \) such that

\[
\| \chi_{N_0}^c A_n c \|_{\ell^p(\Lambda)} \geq C_0 \| \chi_{N_0}^c c \|_{\ell^p(\Lambda')} \quad \text{for all } c \in \ell^p(\Lambda'),
\]

where \(N_0 \leq N \in \mathbb{Z} \) and \(n \in N\mathbb{Z}^d \).

(iii) There exist a positive integer \(N_0 \) and a positive constant \(\alpha \) satisfying

\[
\alpha > 2(5 + 2^{1-p})^{d/p} R(\Lambda)^{1/p} R(\Lambda')^{1-1/p} \inf_{0 \leq d \lesssim N_0} \left(\| A - A_s \|_{C(\Lambda, \Lambda')} + \frac{ds}{N_0} \| A \|_{C(\Lambda, \Lambda')} \right)
\]

such that

\[
\| \chi_{N_0}^{2N_0} A_{n_0} c \|_{\ell^p(\Lambda)} \geq \alpha \| \chi_{N_0}^{N_0} c \|_{\ell^p(\Lambda')}
\]

hold for all \(c \in \ell^p(\Lambda') \) and \(n \in N_0\mathbb{Z} \).

Using the above theorem, we obtain the following equivalence of \(\ell^p \)-stability for infinite matrices having certain off-diagonal decay, which is established in [2, 28, 23] for \(\gamma > d(1+p) \), \(\gamma > 0 \), and \(\gamma \geq 0 \) respectively.

Corollary 3.2. Let \(\Lambda, \Lambda' \) be relatively-separated subsets of \(\mathbb{R}^d \), and let \(A = (a(\lambda, \lambda'))_{\lambda, \lambda' \in \Lambda'} \) satisfy

\[
\| A \|_{c(\Lambda, \Lambda')} = \sum_{k \in \mathbb{Z}^d} (1 + |k|)\gamma \sup_{\lambda, \lambda' \in \Lambda'} |a(\lambda, \lambda')| \chi_{[k+[1/2, 1/2]^d]}(\lambda - \lambda') < \infty,
\]

where \(\gamma > 0 \). Then the \(\ell^p \)-stability of the infinite matrix \(A \) are equivalent to each other for different \(1 \leq p \leq \infty \).

Proof. Let \(1 \leq p \leq \infty \) and let \(A \) have \(\ell^p \)-stability. Then by Theorem 3.1, there exists a positive constant \(C_0 \) and a positive integer \(N_0 \) such that

\[
\| \chi_{N_0}^{2N_0} A_{n_0} c \|_{\ell^p(\Lambda)} \geq C_0 \| \chi_{N_0}^{N_0} c \|_{\ell^p(\Lambda')} \quad \text{for all } c \in \ell^p(\Lambda'),
\]

where \(N_0 \leq N \in \mathbb{Z} \) and \(n \in N\mathbb{Z}^d \). From the equivalence of different norms on a finite-dimensional space, we have that

\[
((2N)^d R(\Lambda))^{\min(1/\gamma - 1/p, 0)} \| \chi_{N_0}^{N_0} c \|_{\ell^p(\Lambda)} \leq \| \chi_{N_0}^{N_0} c \|_{\ell^p(\Lambda)} \leq ((2N)^d R(\Lambda))^{\max(1/\gamma - 1/p, 0)} \| \chi_{N_0}^{N_0} c \|_{\ell^p(\Lambda')} \quad \text{for all } c \in \ell^p(\Lambda'),
\]
where $1 \leq p, q \leq \infty$, $1 \leq N \in \mathbb{Z}$ and $n \in N\mathbb{Z}^d$ \((\ref{23})\). Therefore for $1 \leq q \leq \infty$,
\[
\|\chi_n^{2N}A\chi_n^{N}c\|_{\ell^q(\Lambda)} \leq C_0(2N)^{-d[1/p-1/q]}R(\Lambda')^{\min(1/p-1/q, 0)}
\times R(\Lambda)^{-\max(1/p-1/q, 0)}\|\chi_n^{N}c\|_{\ell^q(\Lambda')} \quad \text{for all} \quad c \in \ell^q(\Lambda'),
\]
where $N_0 \leq N \in \mathbb{Z}$ and $n \in N\mathbb{Z}^d$. We notice that
\[
\inf_{0 \leq s \leq N} (\|A - A_s\|_{\ell^q(\Lambda, \Lambda')} + \frac{ds}{N}\|A\|_{\ell^q(\Lambda, \Lambda')}) \leq \|A\|_{\ell^q(\Lambda, \Lambda')} \inf_{0 \leq s \leq N} (s^3 + \frac{ds}{N}) \leq (d + 1)\|A\|_{\ell^q(\Lambda)} N^{-\gamma/(1+\gamma)}.
\]
Thus for $1 \leq q \leq \infty$ with $d[1/p-1/q] < \gamma/(1+\gamma)$, it follows from \((\ref{3.14})\) and \((\ref{3.11})\)
that there exists a sufficiently large integer N_0 such that
\[
\|\chi_n^{2N}A\chi_n^{N}c\|_{\ell^q(\Lambda)} \geq \alpha\|\chi_n^Nc\|_{\ell^q(\Lambda')}
\]
hold for all $c \in \ell^p(\Lambda')$, $N \geq N_0$ and $n \in N\mathbb{Z}^d$, where α is a positive constant larger than $2(5+2^{1-q})d/q(R(\Lambda')^{1/p}R(\Lambda')^{1-1/q})\inf_{0 \leq s \leq N_0} (\|A - A_s\|_{\ell^q(\Lambda, \Lambda')} + \frac{ds}{N}\|A\|_{\ell^q(\Lambda, \Lambda')}).$
Then by Theorem \ref{3.3} the infinite matrix A has ℓ^p-stability for all $1 \leq q \leq \infty$ with $d[1/q-1/p] < \gamma/(1+\gamma)$. Applying the above trick repeatedly, we prove the ℓ^p-stability of the infinite matrix A for any $1 \leq q \leq \infty$.

To prove Theorem \ref{3.3}, we first recall some basic properties for infinite matrices A in the class $C(\Lambda, \Lambda')$ and its truncation matrices $A_s, s \geq 0$.

Lemma \ref{3.3} \((\ref{23})\). Let $1 \leq p \leq \infty$, the subsets Λ, Λ' of \mathbb{R}^d be relatively-separated, A be an infinite matrix in the class $C(\Lambda, \Lambda')$, and $A_s, s \geq 0$, be the truncation matrices of A. Then
\[
\|Ac\|_{\ell^p(\Lambda)} \leq R(\Lambda)^{1/p}R(\Lambda')^{1-1/p}\|A\|_{\ell^p(\Lambda, \Lambda')}\|c\|_{\ell^p(\Lambda')} \quad \text{for all} \quad c \in \ell^p(\Lambda'),
\]
\[
\lim_{s \to +\infty} \|A - A_s\|_{\ell^p(\Lambda, \Lambda')} = 0,
\]
\[
\lim_{N \to +\infty} \inf_{0 \leq s \leq N} (\|A - A_s\|_{\ell^p(\Lambda, \Lambda')} + \frac{ds}{N}\|A\|_{\ell^p(\Lambda, \Lambda')}) = 0,
\]
and
\[
\|A_s\|c \leq \|A\|c \quad \text{for all} \quad s \geq 0.
\]

Let $\psi_0(x_1, \ldots, x_d) = \prod_{i=1}^d \max(\min(2 - 2|x_i|, 1), 0)$ be a cut-off function on \mathbb{R}^d. Then
\[
0 \leq \chi_{[-1/2, 1/2]^d}(x) \leq \psi_0(x) \leq \chi_{[-1, 1]^d}(x) \leq 1 \quad \text{for all} \quad x \in \mathbb{R}^d,
\]
and
\[
|\psi_0(x) - \psi_0(y)| \leq 2d\|x - y\|_{\infty} \quad \text{for all} \quad x, y \in \mathbb{R},
\]
where $\|x\|_{\infty} = \max_{1 \leq i \leq d}|x_i|$ for $x = (x_1, \ldots, x_d)$. Define the multiplication operator Ψ_N^Λ on $\ell^p(\Lambda)$ by
\[
\Psi_N^\Lambda : \ell^p(\Lambda) \ni (c(\lambda))_{\lambda \in \Lambda} \mapsto \left(\psi_0\left(\frac{\lambda-n}{N}\right)c(\lambda)\right)_{\lambda \in \Lambda} \in \ell^p(\Lambda).
\]
Applying \((\ref{3.17})\) and \((\ref{5.13})\) for the cut-off function ψ_0, we obtain the following properties for the multiplication operators $\Psi_N^\Lambda, n \in N\mathbb{Z}$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Lemma 3.4. Let $1 \leq N \in \mathbb{Z}$, A be a relatively-separated subset of \mathbb{R}^d, and the multiplication operators $\Psi^N_n, n \in N\mathbb{Z}^d$, be as in (3.19). Then
\begin{equation}
\|\Psi^N_n c\|_{\ell^p(A)} \leq \|\chi^N_n c\|_{\ell^p(A)} \quad \text{for all } c \in \ell^p(A),
\tag{3.20}
\end{equation}
where $1 \leq p \leq \infty$,
\begin{equation}
\|c\|_{\ell^p(A)} \leq \left(\sum_{n \in N\mathbb{Z}^d} \|\Psi^N_n c\|_{\ell^p(A)}^p \right)^{1/p} \leq 2^{d/p} \|c\|_{\ell^p(A)} \quad \text{for all } c \in \ell^p(A),
\tag{3.21}
\end{equation}
\begin{equation}
\left(\sum_{n \in N\mathbb{Z}^d} \|\Psi^N_n c\|_{\ell^p(A)}^p \right)^{1/p} \leq (5+2^{1-p})^{d/p} \|c\|_{\ell^p(A)} \quad \text{for all } c \in \ell^p(A),
\tag{3.22}
\end{equation}
where $1 \leq p < \infty$, and
\begin{equation}
\|c\|_{\ell^\infty(A)} = \sup_{n \in N\mathbb{Z}^d} \|\Psi^N_n c\|_{\ell^\infty(A)} = \inf_{0 \leq s \leq N} \left(\|A_N - A_s\|_{\ell^\infty(A')} + \frac{2ds}{N} \|A_s\|_{\ell^\infty(A')} \right).
\tag{3.23}
\end{equation}

To prove Theorem 2.1, we also need the following result.

Lemma 3.5 (23). Let $N \geq 1$, the subsets Λ, Λ' of \mathbb{R}^d be relatively-separated, A be an infinite matrix in the class $C(\Lambda, \Lambda')$, A_N be the truncation matrix of A, and $\Psi^N_n, n \in N\mathbb{Z}^d$, be the multiplication operators in (3.19). Then
\begin{equation}
\|\Psi^N_N A_N - A_N \Psi^N_N\|_{C(\Lambda, \Lambda')} \leq \inf_{0 \leq s \leq N} \left(\|A_N - A_s\|_{C(\Lambda, \Lambda')} + \frac{2ds}{N} \|A_s\|_{C(\Lambda, \Lambda')} \right).
\tag{3.24}
\end{equation}

Now we start to prove Theorem 3.1.

Proof of Theorem 3.1. (i)⇒(ii): By the ℓ^p-stability of the infinite matrix A, there exists a positive constant C_0 (independent of $n \in N\mathbb{Z}^d$ and $1 \leq N \in \mathbb{Z}$) such that
\begin{equation}
\|A\chi^N_n c\|_{\ell^p(A)} \geq C_0 \|\chi^N_n c\|_{\ell^p(A)} \quad \text{for all } c \in \ell^p(A'),
\tag{3.25}
\end{equation}
where $n \in N\mathbb{Z}^d$ and $N \geq 1$. Noting that
\begin{equation}
\chi^N_n A_N \Psi^N_n = A_N \Psi^N_n
\tag{3.26}
\end{equation}
and applying (3.13) yield
\begin{equation}
\|A\chi^N_n c - \chi^N_n A_N \chi^N_n c\|_{\ell^p(A)} = \|(I - \chi^N_n)(A - A_N)\chi^N_n c\|_{\ell^p(A)} \leq R(A)^{1/p} R(A')^{1-1/p} \|A - A_N\|_{C(\Lambda, \Lambda')} \|\chi^N_n c\|_{\ell^p(A')},
\tag{3.27}
\end{equation}
where I is the identity operator. Combining the estimates in (3.25) and (3.27) proves that
\begin{equation}
\|\chi^N_n A_N \Psi^N_n c\|_{\ell^p(A)} \geq \left(C_0 - R(A)^{1/p} R(A')^{1-1/p} \|A - A_N\|_{C(\Lambda, \Lambda')} \right) \|\chi^N_n c\|_{\ell^p(A')},
\tag{3.28}
\end{equation}
hold for all $c \in \ell^p(A')$, where $n \in N\mathbb{Z}^d$ and $N \geq 1$. The conclusion (ii) then follows from (3.14) and (3.28).

(ii)⇒(iii): The implication follows from (3.15).

(iii)⇒(i): Let $1 \leq p < \infty$. Take any $n \in N_0\mathbb{Z}^d$ and $c \in \ell^p(A')$. By the assumption (iii) for the infinite matrix A,
\begin{equation}
\|\chi^N_n A_N \Psi^N_n c\|_{\ell^p(A)} = \|\chi^N_n A_N \Psi^N_n c\|_{\ell^p(A')} \geq \alpha \|\Psi^N_n c\|_{\ell^p(A')}.
\tag{3.29}
\end{equation}
This together with (3.13) and (3.26) implies that

$$
\| A N_0 \Psi_n^N c \|_{\ell^p(\Lambda)}
= \| \chi_n^{2N_0} (A N_0 - A + A) \Psi_n^N c \|_{\ell^p(\Lambda)}
\geq \| \chi_n^{2N_0} A N_0 \Psi_n^N c \|_{\ell^p(\Lambda)} - \| \chi_n^{2N_0} (A N_0 - A) \Psi_n^N c \|_{\ell^p(\Lambda)}
\geq (\alpha - R(\Lambda)^{1/p} R(\Lambda')^{1-1/p}) \| A - A_{N_0} \|_{C(\Lambda, \Lambda')} \| \Psi_n^N c \|_{\ell^p(\Lambda')}.
$$

From (3.13) and (3.24) it follows that

$$
\| (\Psi_n^N A N_0 - A N_0 \Psi_n^N) c \|_{\ell^p(\Lambda)}
= \| (\Psi_n^N A N_0 - A N_0 \Psi_n^N) \Psi_n^N c \|_{\ell^p(\Lambda)}
\leq R(\Lambda)^{1/p} R(\Lambda')^{1-1/p} \| \Psi_n^N A N_0 - A N_0 \Psi_n^N \|_{C(\Lambda, \Lambda')} \| (\Psi_n^N c) \|_{\ell^p(\Lambda')}
\leq R(\Lambda)^{1/p} R(\Lambda')^{1-1/p}
\times \inf_{0 \leq s \leq N_0} \left(\| A N_0 - A_s \|_{C(\Lambda, \Lambda')} + \frac{2d_s}{N_0} \| A N_0 \|_{C(\Lambda, \Lambda')} \right) \| (\Psi_n^N c) \|_{\ell^p(\Lambda')}.
$$

Combining (3.21), (3.22), (3.30) and (3.31), we get

$$
2^{d/p} \| A N_0 c \|_{\ell^p(\Lambda)} \geq \left(\sum_{n \in N_0 Z} \| \Psi_n^N A N_0 c \|_{\ell^p(\Lambda)}^p \right)^{1/p}
\geq \left(\alpha - R(\Lambda)^{1/p} R(\Lambda')^{1-1/p} \| A - A_{N_0} \|_{C(\Lambda, \Lambda')} \left(\sum_{n \in N_0 Z} \| \Psi_n^N c \|_{\ell^p(\Lambda')}^p \right)^{1/p}
- R(\Lambda)^{1/p} R(\Lambda')^{1-1/p} \inf_{0 \leq s \leq N_0} \left(\| A N_0 - A_s \|_{C(\Lambda, \Lambda')} + \frac{2d_s}{N_0} \| A N_0 \|_{C(\Lambda, \Lambda')} \right)
\times \left(\sum_{n \in N_0 Z} \| \Psi_n^N c \|_{\ell^p(\Lambda')}^p \right)^{1/p}
\geq \left(\alpha - R(\Lambda)^{1/p} R(\Lambda')^{1-1/p} \| A - A_{N_0} \|_{C(\Lambda, \Lambda')} - (5 + 2^{1-p})^{1/p} R(\Lambda)^{1/p} R(\Lambda')^{1-1/p}
\times \inf_{0 \leq s \leq N_0} \left(\| A N_0 - A_s \|_{C(\Lambda, \Lambda')} + \frac{2d_s}{N_0} \| A N_0 \|_{C(\Lambda, \Lambda')} \right) \right) \| c \|_{\ell^p(\Lambda')}.
$$

Therefore

$$
\| A c \|_{\ell^p(\Lambda)} \geq \| A N_0 c \|_{\ell^p(\Lambda)} - \| (A - A_{N_0}) c \|_{\ell^p(\Lambda)} \geq 2^{-1/p} \left(\alpha - (1 + 2^{d/p}) R(\Lambda)^{1/p} R(\Lambda')^{1-1/p} \| A - A_{N_0} \|_{C(\Lambda, \Lambda')} - (5 + 2^{1-p})^{1/p} R(\Lambda)^{1/p} R(\Lambda')^{1-1/p}
\times \inf_{0 \leq s \leq N_0} \left(\| A N_0 - A_s \|_{C(\Lambda, \Lambda')} + \frac{2d_s}{N_0} \| A N_0 \|_{C(\Lambda, \Lambda')} \right) \right) \| c \|_{\ell^p(\Lambda')} \geq 2^{-d/p} \left(\alpha - 2(5 + 2^{1-p})^{1/p} R(\Lambda)^{1/p}
\times R(\Lambda')^{1-1/p} \inf_{0 \leq s \leq N_0} \left(\| A - A_s \|_{C(\Lambda, \Lambda')} + \frac{d_s}{N_0} \| A \|_{C(\Lambda, \Lambda')} \right) \right) \| c \|_{\ell^p(\Lambda')},
$$

and the conclusion (i) for $1 \leq p < \infty$ follows.

The conclusion (i) for $p = \infty$ can be proved by a similar argument. We omit the details here. \qed
ACKNOWLEDGMENTS

The author thanks Professors Deguang Han, Zuhair M. Nashed, Xianliang Shi, and Wai-Shing Tang for their discussion and suggestions in preparing the manuscript.

REFERENCES

Department of Mathematics, University of Central Florida, Orlando, Florida 32816
E-mail address: qsun@mail.ucf.edu