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STABILITY CRITERION FOR CONVOLUTION-DOMINATED
INFINITE MATRICES
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(Communicated by Marius Junge)

ABSTRACT. Let ¢P be the space of all p-summable sequences on Z. An infinite
matrix is said to have ¢P-stability if it is bounded and has bounded inverse
on ¢P. In this paper, a practical criterion is established for the ¢P-stability of
convolution-dominated infinite matrices.

1. INTRODUCTION
Let C be the Gohberg-Baskakov-Sjostrand class of infinite matrices A =
(a(j,5"))j.4:ez with
IAllc =" sup la(j.j')] < oo.

ez —I'=k
Let (P := (P(Z) be the set of all p-summable sequences on Z with the standard
norm || - ||,. An infinite matrix A := (a(j,j"));7ez € C defines a bounded linear

operator on #P,1 < p < oo, in the sense that

(1.1) Ae= (Y aGii)elh) s

: JEZ

J'EL
where ¢ = (c(j));jez € ¢P. Given a summable sequence h = (h(j)) ez € ¢*, define
the convolution operator Cp, on ¢P,1 < p < oo, by

(1.2) Ch: 3 (b)), — (Zh(j - k)b(k)) .

kEZ I
Observe that the linear operator associated with an infinite matrix A € C is domi-
nated by a convolution operator in the sense that

(1.3) (A < (CHleDG) = 3 kGG = e, €2,
JIEL

for any sequence ¢ = (¢(j))jez € P,1 < p < oo, where |c| = (|c(j)])jez and the
sequence (sup;_;—y [a(j,7")|)rez can be chosen to be the sequence h = (h(j)) ez
in (L3). So infinite matrices in the set C are said to be convolution-dominated.

Convolution-dominated infinite matrices were introduced by Gohberg, Kaashoek,
and Woerdeman [I2] as a generalization of Toeplitz matrices. They showed that the
class C equipped with the standard matrix multiplication and the above norm || - ||¢
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is an inverse-closed Banach subalgebra of B(¢F) for p = 2. Here B(¢?),1 < p < oo,
is the space of all bounded linear operators on P with the standard operator norm,
and a subalgebra A of a Banach algebra B is said to be inverse-closed if when
an operator T € A has an inverse T~ 1 in B, then 7! € A ([7, 1] 21]). The
inverse-closed property for convolution-dominated infinite matrices was rediscov-
ered by Sjostrand [25] with a completely different proof and an application to a
deep theorem about pseudodifferential operators. Recently Shin and Sun [23] gen-
eralized Gohberg, Kaashoek and Woerdeman’s result and proved that the class C
is an inverse-closed Banach subalgebra of B(¢P) for any 1 < p < co. The readers
may refer to [5], [10] 20} (23] 25 27] and the references therein for related results and
various generalizations on the inverse-closed property for convolution-dominated
infinite matrices.

Convolution-dominated infinite matrices arise and have been used in the study
of spline approximation ([8 [9]), wavelets and affine frames ([0l [I8]), Gabor frames
and non-uniform sampling ([3} [14} [15], 26]), and pseudo-differential operators (|13
16l 24, 25] and the references therein). Examples of convolution-dominated infinite
matrices include the infinite matrix (a(j — j/ ))j,j’ <z associated with convolution
operators and the infinite matrix (a(j — j’)e*%\/*_wj'(j*j'))i iez associated with
twisted convolution operators, where 6 € R and the sequence a= (a(j)) ez satisfies
> ez la(s)] < oo ([T, 14, 19, 27, [29]).

A convolution-dominated infinite matrix A is said to have ¢P-stability if there are
two positive constants Cy and Cy such that

(1.4) Cillellp < ||Acllp < Colle|l, for all ¢ € ¢P.

The ¢P-stability is one of basic assumptions for infinite matrices arising in the study
of spline approximation, Gabor time-frequency analysis, nonuniform sampling, and
algebra of pseudo-differential operators; see [11 [3] [6], 8 @] 10} 14} [T5] [16], 18] 19, 23]
241, 25126, 277, 29] and the references therein. Practical criteria for the ¢P-stability
of a convolution-dominated infinite matrix will play important roles in the further
study of those topics.

However, up to the knowledge of the author, little is known about practical
criteria for the ¢P-stability of an infinite matrix. For an infinite matrix A =
(a(j —J))j,jrez associated with convolution operators, there is a very useful crite-
rion for its /P-stability. It states that A has ¢P-stability if and only if the Fourier
series a(§) = Z:jeza(j)e_ij5 of the generating sequence a = (a(j));jez € ' does
not vanish on the real line, i.e.,

(1.5) a(€) #0 forall £ eR.

Applying this criterion for the ¢P-stability, one concludes that the spectrum o, (C,)
of the convolution operator C, as an operator on (P is independent of 1 < p < oo,
ie.,

(1.6) 0p(Co) = 04(Cy) forall 1 <p,q < oo;

see [4l 17, 22, 23] and the references therein for the discussion on spectrum of var-
ious convolution operators. Applying the above criterion again, together with the
classical Wiener’s lemma (]29]), it follows that the inverse of an ¢P-stable convolu-
tion operator C, is a convolution operator C} associated with another summable
sequence b.
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For a convolution-dominated infinite matrix A = (a(4, j'));,j7ez, & popular suffi-
cient condition for its ¢!-stability and ¢>°-stability is that A is diagonal-dominated,
ie.,

(1.7) inf (Ja(j. )| —max (Y la(G. ), 3 la(i'.4)]) ) > 0.

! 34 34
In this paper, we provide a practical criterion for the ¢P-stability of convolution-
dominated infinite matrices. We show that a convolution-dominated infinite matrix

A has (P-stability if and only if it has certain “diagonal-blocks-dominated” property
(see Theorem 2] for the precise statement).

2. MAIN THEOREM

To state our criterion for the ¢P-stability of convolution-dominated infinite ma-
trices, we introduce two concepts. Given an infinite matrix A, define the truncation
matrices As,s > 0, by

As = (a(imj)x(—s,s) (7’ - j))i,jGZ’
where y g is the characteristic function on a set E. Given y € R and 1 < N € Z,
define the operator Xév on /P by
N . . .
Xy : gp 9 (C(j))jez — (C(])X(—N,N)(j - y))jEZ 6 gp'
The operator Xév is a diagonal matrix diag(x—n,n)(J — ¥))jecz-

Theorem 2.1. Let 1 < p < o0, and let A be a convolution-dominated infinite
matriz in the class C. Then the following statements are equivalent:

(i) The infinite matriz A has ¢P-stability.
(ii) There exist a positive constant Cy and a positive integer Ny such that

(2.1) IX2N Axz ellp > Collxiellp, e €7,

hold for all integers N > Ny and n € NZ.
(iil) There exist a positive integer Ny and a positive constant a satisfying

1-p\1/p _ s
(2.2) 0> 254277 int (A= Ade + 311 4l)
such that
(2.3) N Axoell, > allxocllp,  ce e,

hold for all n € NyZ.

Taking No = 1 in (Z2) and (23]), we obtain a sufficient condition (24)), which is
a strong version of the diagonal-domination condition (L), for the £>°-stability of
a convolution-dominated infinite matrix.

Corollary 2.2. Let A = (a(j,j')),.;7ez be a convolution-dominated infinite matriz
in the class C. If

(2.4) inf (la(G, )| =2 > swp Ja(j.5)) >0,
JEL i il—=l
0#£kez? 7

then A has £°°-stability.
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We say that an infinite matrix A = (a(7,7))i jez is a band matriz if a(i,j) = 0
for all ¢, j € Z satisfying j > ¢+k or j < ¢ —k. The quantity 2k +1 is the bandwidth
of the matrix A. For a band matrix A with bandwidth 2k + 1, A — A, is the zero
matrix if s > k. Therefore for N > k,

s k
inf (114 - Alle + 2llAllc) < TllAle.
it (14 Adle + S4ll) < Al
This, together with Theorem 2.1} gives the following sufficient condition for a band
matrix to have fP-stability.

Corollary 2.3. Let 1 < p < oo, and let A be a convolution-dominated band matriz
in the class C with bandwidth 2k + 1. If there exists an integer Ny > k such that

(2.5) [Axnellp > allxncllp, € e,

holds for some constant o strictly larger than 2(5+4 2'"P)V/Pk| Allc/No, then A has
0P -stability.

If we further assume that the infinite matrix A in Corollary has the form
A = (a(j — j"))j sz for some finite sequence a = (a(j));jez satistying a(j) = 0
for [j| > k, then [|Allc = > ;<4 [a(j)| and the condition (23] can reformulated as
follows: -

~ vk .
(2.6) IAngelly = 1= (D2 laGi)) lellps e € B2+,
O " ljl<k

holds for some v > 2(5 + 21=P)1/?_ where

T . ./
(2.7) Any = (alj = ))—No—k§j§N0+k7—N0§j’SN0

and .
lell, = { (X2 p, eGP if 1< p < o0,
SUP_y, <j<k, €(J)]  if p=o0,
for ¢ = (e(=k1), -+ ,c(0),...,c(kg))T € RFFk2H+1 A5 a conclusion from (2:6) and
Z7), we see that if A = (a(j — j'))j,j7ez does not have ¢P-stability, then for any
large integer IV,

(2.8) i IAwely 2(5”1%)1/%( > \a(j)l).

0F#cER2N+1 ”C”P B N lil1<k

For the special case p = 2, the above inequality (Z8]) can be interpreted as the
minimal eigenvalue of (Ay)TAy is less than or equal to %(Z‘j|<k |a(j)\)2,
and it can also be rewritten as

(S toPievorde) ™ |
v < 7))
(7 evpa) N (uzg:k )

where a(§) = > ¢z a(j)e~¥¢ and Il is the set of all trigonometrical polynomials
of degree at most N.

If the sequence a = (a(j))jez satisfies a(0) = 1,a(—1) = —1, and a(j) = 0
otherwise, then the bandwidth of the infinite matrix A = (a(j — j'));,j7ez is equal
to 3, the norm ||Al|c of the associated infinite matrix A is equal to 2,

(2.9) inf
0#£Py €l y
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-1 0 0 0 0
1 -1 0 0 0
1 -1 0 0
(2.10) Ay = :
0 0 O 1 -1
0O 0 O 0 1
and ~
e Avel 1
0#ceR2N+1 i/, T N+1
where the last inequality holds since the matrix
-1 0 0 --- 0 0 00 0 0
-1 -1 0 -~ 0 O0O0O0 -~ 00
-1 -1 -1 -~ 0 0 OO0 -~ 0O
B e -1 -1 -1 -1 0 0 0 0 0
Nl oo 0 0 1 1 11
0 0 O 0 0 01 11
o o o0 - 0 O0O0O0O -+ 11
o o o0 -~ 0 O0O0O0 -+ 01

is a left inverse of the matrix Ay. Therefore the order N~' in (Z8) cannot be
improved in general, but the author believes that the bound constant 2(5+2'~7)/?
in (22) and (28)) is not optimal and could be improved.

3. PrROOF

We say that a discrete subset A of R is relatively-separated if
(3.1) R(A) := sup Z Xat[—1/2,1/2)d(T) < 00
2€R? \en

([1, 23, 27]). Clearly, the set Z of all integers is a relatively-separated subset of R
with

(3.2) R(Z) = 1.
Given a discrete set A, let £P(A) be the set of all p-summable sequences on the set
A with standard norm || - ||g»(a) or [| - ||, for brevity.

Given two relatively-separated subsets A and A’ of R%, define

C(AN) = {A = (a(A\, X))

AEAN €A ”A”C(A,A/) < oo}7

where

Z sup  |a(A, X)\Xk+[—1/2,1/2]d()\ - )\/)-

| Allea,an
jeza NEAN EN

It is obvious that

(3.3) C(Z,7) =C.
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Given an infinite matrix A = (a(X, A))xea,vens, define its truncation matrices
Asa S Z 07 by

_ / Y
As = (a’()‘7 A )X(fs,s)d (>‘ A )))\EA,/\’EA'.
For any y € R? and a positive integer N, define the operator XZJJV on (P(A) by
(3.4) N2 P(A) D (C()‘))AGA — (e(N)x(—n,nya(A— y))AeA € P(A).

In this section, we establish the following criterion for the /P-stability of infinite
matrices in the class C(A, A’), which is a slight generalization of Theorem 2] by

B2) and B3).

Theorem 3.1. Let 1 < p < oo, the subsets A, A’ of R¢ be relatively-separated,
and the infinite matriz A belong to C(A,A"). Then the following statements are
equivalent to each other:

(i) The infinite matriz A has €P-stability, i.e., there exist positive constants
C1 and Cy such that

(3.5) Cillcllerary < | Acller(ay < Callcllenary  for all ¢ € £P(A).
(ii) There exist a positive constant Coy and a positive integer Ny such that
(3.6) DY AxY ellngay = CollxYellengary for all e € ("),

where Ng < N € Z and n € NZ2.
(iii) There exist a positive integer Ny and a positive constant « satisfying
(3.7)

ds

1—p\d 1 1-1 .

o > 2(5 + 2 p) /pR(A) /pR(A/) /p OngnSfNO (”A — ASHC(A,A’) —+ FOHAHC(AvA/))
such that

(3.8) 2N AxXocllen(ny = ellxn®cller(ar)
hold for all ¢ € ¢P(A’) and n € NoZ.

Using the above theorem, we obtain the following equivalence of ¢P-stability for
infinite matrices having certain off-diagonal decay, which is established in [2] 28], 23]
for v > d(d+1),7 > 0, and v > 0 respectively.

Corollary 3.2. Let A,A’ be relatively-separated subsets of RY, and let A =
(a(A X)) reanenr satisfy

IAlle,aan = Y (A+1EDY  sup  [a(A N)|xus—1/2,1/22(A = X) < 00,
Pyt AEAN EA

where v > 0. Then the (P-stability of the infinite matriz A are equivalent to each
other for different 1 < p < co.

Proof. Let 1 < p < oo and let A have ¢P-stability. Then by Theorem [B.] there
exists a positive constant Cjy and a positive integer Ny such that

(3.9) Ix2N Axcller(ay > Collxi cllen(ary  for all ¢ e P(A),

where Ny < N € Z and n € NZ¢. From the equivalence of different norms on a
finite-dimensional space, we have that

((2N) R(A))™n @ a=/2O 3N o ay < (A elloagay
< ((2N) R(A))max/a=2/p0) |\ Nef| 5 for all ¢ € £P(A),
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where 1 < p,q < 00,1 <N €Z and n € NZ? (]2, 23]). Therefore for 1 < q < oo,
||X$LNAX7]¥C||@(A) > CO(QN)*dll/pfl/QIR(A')min(l/pfl/%o)

(3.10) X R(A) ™ max(U/p=1/a0) |\ Ne|l g pny for all c € £7(A'),
where Ny < N € Z and n € NZ?. We notice that

. ds . ds
odnf o (1A = Aslleanry + NHAHC(A,A/)) < lAlle,any  nf 0 (s7+ ~)
(3.11) < (d+ 1) Alle,aan N7/

Thus for 1 < ¢ < oo with d|1/p—1/¢| < v/(1+47), it follows from (BI0) and BI1)
that there exists a sufficiently large integer Ny such that

(3.12) IN2N AxD elloacay = allxd elleaar)

hold for all ¢ € £9(A’), N > Ny and n € NZ%, where « is a positive constant larger
than 2(5 + 21iq)d/qR(A)UqR(A/)lil/q infOSSSNo (HA - AS HC(A,A’) + 1%—'2 ”A”C(A,A’)) .
Then by Theorem Bl the infinite matrix A has £?-stability for all 1 < g < oo
with d|1/q — 1/p| < /(1 + 7). Applying the above trick repeatedly, we prove the
{4-stability of the infinite matrix A for any 1 < ¢ < oo. O

To prove Theorem [3.I] we first recall some basic properties for infinite matrices
A in the class C(A, A’) and its truncation matrices Ay, s > 0.

Lemma 3.3 ([23]). Let 1 < p < oo, the subsets A, A’ of R? be relatively-separated,
A be an infinite matriz in the class C(A, '), and Ags,s > 0, be the truncation
matrices of A. Then

(3.13) || Acllmw(a) < RIAYPR(A) P Alleannllcllmary  for all e € £2(A),

(3.14) Jim A= Alleaan =0,
. . ds
(3.15) lem+w ogl?;v (1A = Aglleca,ary + NHAHC(A,A’)) =0,
and
(3.16) lAsllc < ||Alle for all s > 0.

Let ¥o(z1,...,24) = Hle max(min(2 — 2|z;|,1),0) be a cut-off function on R.
Then

(3.17) 0 < Xj—1/2.1/24 (%) < Yo() < x(—1,1)a(x) <1 for all z € R,

and

(3.18) [60(&) — Yo)] < 2dlz — ylloo  for all 2,y € R,

where ||z o = maxi<i<q |®;| for £ = (x1,...,24). Define the multiplication opera-

tor N on ¢P(A) by
A—n

(3.19) TV P(A) 3 (c(N))ren — (wo( )C(A))AGA € (P(A).

Applying BI7) and BI]) for the cut-off function )y, we obtain the following
properties for the multiplication operators ¥, n € NZ.
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Lemma 3.4. Let 1 < N € Z, A be a relatively-separated subset of R?, and the
multiplication operators VN n € NZ9, be as in [319). Then
(3.20) 1@ ellen(ay < lIxn cllercay  for all ¢ € £7(A),
where 1 < p < 00,
1/p
(321) el < (D 10Nelbn)) < 277llellogay  for all ¢ € E(A),

neNZ4

(3.22)

1/p
47|\l o) < ( > ||\I/lecH§,,(A)) < (542"P) P cl| oy for all ¢ € (P(A),
neNZI

where 1 < p < 00, and

(3.23) |lclle=(ay = sup [[UNellpeay = sup [[UpNellpe(ny for all c € £(A).
neNZ neNZ

To prove Theorem [2.I] we also need the following result.

Lemma 3.5 ([23]). Let N > 1, the subsets A, A" of R? be relatively-separated, A
be an infinite matriz in the class C(A,A'), Ax be the truncation matriz of A, and
UN n € NZ4, be the multiplication operators in ([3.19). Then

2ds
. N - N 7’ < i ( _— ’ e ’ ).
(3.24) [, Ay — AN lleaan < 0§1£1£N |AN — Asllea,an + ~ | Asllcca,an
Now we start to prove Theorem [B.11
Proof of Theorem Bl ~ (i)=(ii): By the ¢P-stability of the infinite matrix A,

there exists a positive constant Cy (independent of n € NZ% and 1 < N € Z) such
that

(3.25) [ Ax cller(a) = Collxy ellenary  for all ¢ € £2(A),
where n € NZ¢ and N > 1. Noting that
(3.26) XN AN = AngY

and applying (B13)) yield
1AxR € = X2 Ay cllesa)
= (I =x2¥) (A = An)xy ellenay
(3.27) < R(A)YPR(A)MPIA = Anlleaan X ellesar,
where I is the identity operator. Combining the estimates in ([3.25) and ([B.27)
proves that
(3:28) X2V Axy cller(a) = (Co — R(A)VPR(N) V|| A = Anlleca.nn) X8 eller(ar

hold for all ¢ € £P(A’), where n € NZ¢ and N > 1. The conclusion (ii) then follows
from (BI4) and (328)).

(ii)==(iii): The implication follows from (B.I3]).

(iii)==(1): Let 1 < p < oo. Take any n € NyZ? and ¢ € (P(A’). By the
assumption (iii) for the infinite matrix A,

(3.29) I ATTcllona) = XA AT TR cllen(ay = [ TR cllen(ary.-

n
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This together with (BI3) and ([B:26]) implies that

[ Ano W5 cller(a)
= [t (An, — A+ A)TNclln(a)
[[x2No AxRow el goay — X2V (Ang — A)TNcln(a)

(3.30) > (a— R(A)YVPRA) P A = Anglleann) 1230 cllengar-

From BI3) and B24) it follows that

| \IliLVOANo - ANO\IliLVO)C”KP(A)
(@0 ANy — AN UR0) TN ¢l o)
(MYPRN) P @ Ay, — Ang @ lleann T2 cller ar

R(A)?R(A
R(A)YPR(A) P

Y

I(
I(

IANIN

. 2ds AN
(3.31) % onf (14n = Aslle + T 4w le ) 122 el

Combining (321), (322)), B30) and B3T), we get

1/p
27 Anyelenay = (D IR Angellan))

neNoZ
_ 1/p
> (o= ROPRA) Y714 = Axglleann) (D2 195%lE, a0
neENoZ
_ . 2ds
_R(A)I/PR(A/)l 1/p Oglsnngo (HANO — ASHC(A,A’) + FO”ANOHC(A’AI))
1/p
(D2 el )
neNgZ
> (a — R(M)YPR(A)' P A= A, lleca,ary — (542" 7P)/PR(A)VPR(A) 1P
. 2ds
X of e (14n = Asllea ) + F 14nllen.a) )lellerao,
Therefore

[ Acller(n) = AN Cllera) — (A — Ang )eller(a)

> 27— (14277 RN RN 7| A = A lleqan
—(5+ 21 PP R(A)VPR(A)I /P
. 2ds
x oglsngfzvo (14N, = Aslleca,an + VO”ANOHC(A,A/))> l[eller(ar)
> 279/ (0= 2(5+2' )P R(A)Y

ds
1-1 :
xRN int (14 = Adlecnan + - I14lleca nn)) el

and the conclusion (i) for 1 < p < oo follows.
The conclusion (i) for p = oo can be proved by a similar argument. We omit the
details here. O
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