Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The torsion index of a $ p$-compact group


Author: Jaume Aguadé
Journal: Proc. Amer. Math. Soc. 138 (2010), 4129-4136
MSC (2010): Primary 55P35, 57T15
DOI: https://doi.org/10.1090/S0002-9939-2010-10391-X
Published electronically: May 27, 2010
MathSciNet review: 2679635
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We extend the theory of torsion indices of compact connected Lie groups to $ p$-compact groups and compute these indices in all cases.


References [Enhancements On Off] (What's this?)

  • 1. K.K.S. Andersen, J. Grodal, J.M. Møller, A. Viruel, The classification of $ p$-compact groups for $ p$ odd, Ann. of Math. (2) 167 (2008), 95-210. MR 2373153 (2009a:55012)
  • 2. K.K.S. Andersen, J. Grodal, The classification of $ 2$-compact groups, J. Amer. Math. Soc. 22 (2009), no. 2, 387-436. MR 2476779
  • 3. N. Bourbaki, Groupes et algèbres de Lie, Ch. 4, 5 et 6. Act. Sci. Ind. 1337, Paris, 1968. MR 0240238 (39:1590)
  • 4. D.J. Benson, J.A. Wood, Integral invariants and cohomology of $ B\operatorname{Spin}(n)$, Topology 34 (1995), 13-28. MR 1308487 (95m:55023)
  • 5. F.-X. Dehon, J. Lannes, Sur les espaces fonctionnels dont la source est le classifiant d'un groupe de Lie compact commutatif, Inst. Hautes Études Sci. Publ. Math., No. 89 (1999), 127-177. MR 1793415 (2001m:55038)
  • 6. M. Demazure, Invariants symétriques entiers des groupes de Weyl et torsion, Invent. Math. 21 (1973), 287-301. MR 0342522 (49:7268)
  • 7. W. G. Dwyer, C. W. Wilkerson, A new finite loop space at the prime $ 2$, J. Amer. Math. Soc. 6 (1993), 37-64. MR 1161306 (93d:55011)
  • 8. W. G. Dwyer, C. W. Wilkerson, Homotopy fixed point methods for Lie groups and finite loop spaces, Ann. of Math. (2) 139 (1994), 395-442. MR 1274096 (95e:55019)
  • 9. M. Feshbach, The image of $ H^*(BG;\mathbb{Z})$ in $ H^*(BT;\mathbb{Z})$ for $ G$ a compact Lie group with maximal torus $ T$, Topology 20 (1981), 93-95. MR 592571 (82g:55019)
  • 10. A. Grothendieck, La torsion homologique et les sections rationnelles, in Anneaux de Chow et applications, Séminaire C. Chevalley, 1958, 2nd year, Secrétariat math., Paris, exp. 5.
  • 11. D. Notbohm, On the $ 2$-compact group $ DI(4)$, J. Reine Angew. Math. 555 (2003), 163-185. MR 1956596 (2003k:55018)
  • 12. A. Osse, U. Suter, Invariant theory and the K-theory of the Dwyer-Wilkerson space, Contemp. Math., 265, Amer. Math. Soc., Providence, RI, 2000, 17-185. MR 1803957 (2001j:55005)
  • 13. L. Smith, Polynomial Invariants of Finite Groups. A K Peters, Wellesley, Mass., 1995. MR 1328644 (96f:13008)
  • 14. J. Tits, Sur les degrés des extensions de corps déployant les groupes algébriques simples, C. R. Acad. Sci. Paris Ser. I. Math. 315 (1992), 1131-1138. MR 1194504 (93m:20059)
  • 15. B. Totaro, The torsion index of the spin groups, Duke Math. J. 129 (2005), 249-290. MR 2165543 (2006f:57039b)
  • 16. B. Totaro, The torsion index of $ E_8$ and other groups, Duke Math. J. 129 (2005), 219-248. MR 2165542 (2006f:57039a)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 55P35, 57T15

Retrieve articles in all journals with MSC (2010): 55P35, 57T15


Additional Information

Jaume Aguadé
Affiliation: Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Cerda- nyola del Vallès, Spain
Email: aguade@mat.uab.cat

DOI: https://doi.org/10.1090/S0002-9939-2010-10391-X
Received by editor(s): February 5, 2009
Published electronically: May 27, 2010
Additional Notes: The author is partially supported by grants MTM2007-61545 and SGR2005-00606.
Communicated by: Brooke Shipley
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society