Quantization dimension for some Moran measures

Author:
Mrinal Kanti Roychowdhury

Journal:
Proc. Amer. Math. Soc. **138** (2010), 4045-4057

MSC (2010):
Primary 37A50; Secondary 28A80, 94A34

DOI:
https://doi.org/10.1090/S0002-9939-2010-10406-9

Published electronically:
May 17, 2010

MathSciNet review:
2679625

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The quantization dimension function for some Moran measures has been determined, and a relationship between the quantization dimension function and the temperature function of the thermodynamic formalism arising in multifractal analysis is established.

**1.**R. Cawley and R. D. Mauldin,*Multifractal decomposition of Moran fractals*, Advances in Mathematics, 92 (1992), 196-236. MR**1155465 (93b:58085)****2.**M. Dai and Y. Jiang,*Fractal dimension and measure of the subset of Moran set*, Chaos, Solitons and Fractals, 40 (2009), 190-196. MR**2517925****3.**M. Dai and D. Liu,*The local dimension of Moran measures satisfying the strong separation condition*, Chaos, Solitons and Fractals, 38 (2008), 1025-1030. MR**2435601 (2009g:28015)****4.**M. Dai and X. Tan,*Quantization dimension of random self-similar measures,*J. Math. Anal. Appl., 362 (2010), 471-475.**5.**K. J. Falconer,*Techniques in fractal geometry*, Chichester: Wiley, 1997. MR**1449135 (99f:28013)****6.**K. J. Falconer,*The multifractal spectrum of statistically self-similar measures*, Journal of Theoretical Probability, Vol. 7, No. 3, 681-702, 1994. MR**1284660 (95m:60076)****7.**A. Gersho and R. M. Gray,*Vector quantization and signal compression*, Kluwer Academic Publishers: Boston, 1992.**8.**S. Graf and H. Luschgy,*Foundations of quantization for probability distributions*, Lecture Notes in Mathematics, 1730, Springer, Berlin, 2000. MR**1764176 (2001m:60043)****9.**S. Graf and H. Luschgy,*Asymptotics of the quantization errors for self-similar probabilities*, Real Anal. Exchange, 26, 795-810, 2001. MR**1844394 (2002g:28011)****10.**S. Graf and H. Luschgy,*The Quantization Dimension of Self-Similar Probabilities*, Math. Nachr., 241 (2002), 103-109. MR**1912380 (2003j:28025)****11.**T. Halsey, M. Jensen, L. Kadanoff and I. Procaccia,*Fractal measures and their singularities: The characterization of strange sets*, Phys. Rev. A (3), 33, 1141-51, 1986. MR**823474 (87h:58125a)****12.**J. Hutchinson,*Fractals and self-similarity*, Indiana Univ. Math. J., 30, 713-747, 1981. MR**625600 (82h:49026)****13.**S. Hua, H. Rao, Z. Wen, J. Wu,*On the structures and dimensions of Moran sets*, Science of China (Series A), 43 (8) (2000), 836-852. MR**1799919 (2002a:28011)****14.**A. Käenmäki and M. Vilppolainen,*Separation conditions on controlled Moran constructions*, Fund. Math., 200 (2008), 69-100. MR**2415480 (2010a:28010)****15.**W. Kreitmeier,*Optimal quantization for dyadic homogeneous Cantor distributions*, Math. Nachr., 281, No. 9, 1307-1327 (2008). MR**2442708 (2010c:94025)****16.**L. J. Lindsay and R. D. Mauldin,*Quantization dimension for conformal iterated function systems*, Institute of Physics Publishing, Nonlinearity, 15 (2002), 189-199. MR**1877974 (2002j:28014)****17.**W. Min,*The multifractal spectrum of some Moran measures*, Science in China Ser. A Mathematics, 2005, Vol. 48, No. 8, 1097-1112. MR**2180104 (2006j:28022)****18.**N. Patzschke,*Self-conformal multifractal measures*, Adv. in Appl. Math., Volume 19, Issue 4 (1997), 486-513. MR**1479016 (99c:28020)****19.**Y. Peres, M. Rams, K. Simon and B. Solomyak,*Equivalence of positive Hausdorff measure and the open set condition for self-conformal sets*, Proc. Amer. Math. Soc., 129 (2001), 2689-2699. MR**1838793 (2002d:28004)****20.**M. K. Roychowdhury,*Quantization dimension function and ergodic measure with bounded distortion*, Bulletin of the Polish Academy of Sciences, 57 (2009), 251-262.**21.**A. Schief,*Separation properties for self-similar sets*, Proc. Amer. Math. Soc., 122 (1994), 111-115. MR**1191872 (94k:28012)****22.**P. L. Zador,*Development and evaluation of procedures for quantizing multivariate distributions,*PhD thesis, Stanford University (1964).**23.**S. Zhu,*Quantization dimension of probability measures supported on Cantor-like sets*, J. Math. Anal. Appl., vol. 338, no. 1, 2008, 742-750. MR**2386455 (2009c:28025)****24.**S. Zhu,*The quantization dimension of the self-affine measures on general Sierpiski carpets*, Monatshefte für Mathematik, published electronically, 27 November 2009.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2010):
37A50,
28A80,
94A34

Retrieve articles in all journals with MSC (2010): 37A50, 28A80, 94A34

Additional Information

**Mrinal Kanti Roychowdhury**

Affiliation:
Department of Mathematics, The University of Texas-Pan American, 1201 West University Drive, Edinburg, Texas 78539-2999

Email:
roychowdhurymk@utpa.edu

DOI:
https://doi.org/10.1090/S0002-9939-2010-10406-9

Keywords:
Moran measure,
quantization dimension,
temperature function

Received by editor(s):
November 12, 2009

Received by editor(s) in revised form:
January 22, 2010

Published electronically:
May 17, 2010

Communicated by:
Bryna Kra

Article copyright:
© Copyright 2010
American Mathematical Society