Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Free central extensions of groups and modular Lie powers of relation modules


Authors: Marianne Johnson and Ralph Stöhr
Journal: Proc. Amer. Math. Soc. 138 (2010), 3807-3814
MSC (2010): Primary 20E22, 20J05, 17B01
DOI: https://doi.org/10.1090/S0002-9939-2010-10409-4
Published electronically: May 24, 2010
MathSciNet review: 2679603
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The most prominent special case of our main result is that the free centre-by-(nilpotent of class ($ c-1$))-by-abelian groups $ F/[\gamma_c(F'),F]$ are torsion-free whenever $ c$ is divisible by at least two distinct primes. This is in stark contrast to the case where $ c$ is a prime or $ c=4$, where these relatively free groups contain non-trivial elements of finite order.


References [Enhancements On Off] (What's this?)

  • 1. Gilbert Baumslag, Ralph Strebel, and Michael W. Thomson, `On the multiplicator of $ F/\gamma_c R$', J. Pure Appl. Algebra 16 (1980), no. 2, 121-132. MR 556155 (81e:20039)
  • 2. R.M. Bryant, `Lie powers of infinite-dimensional modules', Beiträge Algebra Geom. 50 (2009), no. 1, 179-193. MR 2499787
  • 3. R.M. Bryant and M. Schocker, `The decomposition of Lie powers', Proc. London Math. Soc. (3) 93 (2006), no. 1, 175-196. MR 2235946 (2007c:20022)
  • 4. R.M. Bryant and Manfred Schocker, `Factorisation of Lie resolvents', J. Pure Appl. Algebra 208 (2007), no. 3, 993-1002. MR 2283441 (2007k:20022)
  • 5. Chander Kanta Gupta, `The free centre-by-metabelian groups', J. Austral. Math. Soc. 16 (1973), 294-299. MR 0335639 (49:419)
  • 6. P.J. Hilton and U. Stammbach, A Course in Homological Algebra (Springer, Berlin, 1971). MR 0346025 (49:10751)
  • 7. Marianne Johnson and Ralph Stöhr, `The free centre-by-nilpotent-by-abelian groups', Bull. Lond. Math. Soc. 41 (2009), no. 5, 795-803. MR 2557460
  • 8. L.G. Kovács and Ralph Stöhr, `Lie powers of relation modules for groups', J. Algebra (2009), doi:10.1016/j.jalgebra.2009.10.007.
  • 9. Yu. V. Kuz$ '$min, `Free center-by-metabelian groups, Lie algebras and $ \mathcal{D}$-groups' (Russian), Izv. Akad. Nauk SSSR Ser. Mat. 41 (1977), no. 1, 3-33, 231. English translation: Math. USSR Izvestija 11 (1977), no. 1, 1-30. MR 0486202 (58:5974)
  • 10. Yu. V. Kuz$ '$min, `The structure of free groups of certain varieties' (Russian), Mat. Sb. (N.S.) 125 (1984), no. 1, 128-142. English translation: Math. USSR Sbornik 53 (1986), no. 1, 131-145. MR 760417 (85m:20074)
  • 11. A.L. Shmel$ '$kin, `Wreath products and varieties of groups' (Russian), Izv. Akad. Nauk SSSR Ser. Mat. 29 (1965), 149-170. MR 0193131 (33:1352)
  • 12. Ralph Stöhr, `On torsion in free central extensions of some torsion-free groups', J. Pure Appl. Algebra 46 (1987), no. 2-3, 249-289. MR 897018 (88j:20032)
  • 13. Ralph Stöhr, `Homology of free Lie powers and torsion in groups', Israel J. Math. 84 (1993), no. 1-2, 65-87. MR 1244659 (94m:20104)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 20E22, 20J05, 17B01

Retrieve articles in all journals with MSC (2010): 20E22, 20J05, 17B01


Additional Information

Marianne Johnson
Affiliation: School of Mathematics, University of Manchester, Alan Turing Building, Man- chester, M13 9PL, United Kingdom
Address at time of publication: Mathematical Institute, 24-29 St Giles’, Oxford, OX1 3LB, United Kingdom
Email: Marianne.Johnson@maths.ox.ac.uk

Ralph Stöhr
Affiliation: School of Mathematics, University of Manchester, Alan Turing Building, Man- chester, M13 9PL, United Kingdom
Email: Ralph.Stohr@manchester.ac.uk

DOI: https://doi.org/10.1090/S0002-9939-2010-10409-4
Received by editor(s): June 30, 2009
Received by editor(s) in revised form: January 27, 2010
Published electronically: May 24, 2010
Additional Notes: This research was supported by EPSRC Standard Research Grant EP/G024898/1.
Communicated by: Martin Lorenz
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society