An improvement to a Berezin-Li-Yau type inequality

Author:
Selma Yildirim Yolcu

Journal:
Proc. Amer. Math. Soc. **138** (2010), 4059-4066

MSC (2010):
Primary 35P15; Secondary 35S99

Published electronically:
May 18, 2010

MathSciNet review:
2679626

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this article we improve a lower bound for (a Berezin-Li-Yau type inequality) that appeared in an earlier paper of Harrell and Yolcu. Here denotes the th eigenvalue of the Klein Gordon Hamiltonian when restricted to a bounded set . can also be described as the generator of the Cauchy stochastic process with a killing condition on . To do this, we adapt the proof of Melas, who improved the estimate for the bound of , where denotes the th eigenvalue of the Dirichlet Laplacian on a bounded domain in .

**1.**N. I. Akhiezer and I. M. Glazman,*Theory of linear operators in Hilbert space. Vol. I*, Monographs and Studies in Mathematics, vol. 9, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1981. Translated from the third Russian edition by E. R. Dawson; Translation edited by W. N. Everitt. MR**615736**

N. I. Akhiezer and I. M. Glazman,*Theory of linear operators in Hilbert space. Vol. II*, Monographs and Studies in Mathematics, vol. 10, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1981. Translated from the third Russian edition by E. R. Dawson; Translation edited by W. N. Everitt. MR**615737****2.**Rodrigo Bañuelos and Tadeusz Kulczycki,*The Cauchy process and the Steklov problem*, J. Funct. Anal.**211**(2004), no. 2, 355–423. MR**2056835**, 10.1016/j.jfa.2004.02.005**3.**Rodrigo Bañuelos and Tadeusz Kulczycki,*Eigenvalue gaps for the Cauchy process and a Poincaré inequality*, J. Funct. Anal.**234**(2006), no. 1, 199–225. MR**2214145**, 10.1016/j.jfa.2005.11.016**4.**Rodrigo Bañuelos, Tadeusz Kulczycki, and Bartłomiej Siudeja,*On the trace of symmetric stable processes on Lipschitz domains*, J. Funct. Anal.**257**(2009), no. 10, 3329–3352. MR**2568694**, 10.1016/j.jfa.2009.06.037**5.**F. A. Berezin,*Covariant and contravariant symbols of operators*, Izv. Akad. Nauk SSSR Ser. Mat.**36**(1972), 1134–1167 (Russian). MR**0350504****6.**R. M. Blumenthal and R. K. Getoor,*The asymptotic distribution of the eigenvalues for a class of Markov operators*, Pacific J. Math.**9**(1959), 399–408. MR**0107298****7.**Evans M. Harrell II and Lotfi Hermi,*Differential inequalities for Riesz means and Weyl-type bounds for eigenvalues*, J. Funct. Anal.**254**(2008), no. 12, 3173–3191. MR**2418623**, 10.1016/j.jfa.2008.02.016**8.**Evans M. Harrell II and Selma Yıldırım Yolcu,*Eigenvalue inequalities for Klein-Gordon operators*, J. Funct. Anal.**256**(2009), no. 12, 3977–3995. MR**2521917**, 10.1016/j.jfa.2008.12.008**9.**Alexei A. Ilyin,*Lower bounds for the spectrum of the Laplace and Stokes operators*, Discrete and Continuous Dynamical Systems, Volume 28, Number 1, September 2010, pp. 131-146. arXiv:0909.2818v1.**10.**Hynek Kovařík, Semjon Vugalter, and Timo Weidl,*Two-dimensional Berezin-Li-Yau inequalities with a correction term*, Comm. Math. Phys.**287**(2009), no. 3, 959–981. MR**2486669**, 10.1007/s00220-008-0692-1**11.**Ari Laptev and Timo Weidl,*Recent results on Lieb-Thirring inequalities*, Journées “Équations aux Dérivées Partielles” (La Chapelle sur Erdre, 2000) Univ. Nantes, Nantes, 2000, pp. Exp. No. XX, 14. MR**1775696****12.**Peter Li and Shing Tung Yau,*On the Schrödinger equation and the eigenvalue problem*, Comm. Math. Phys.**88**(1983), no. 3, 309–318. MR**701919****13.**Elliott H. Lieb and Michael Loss,*Analysis*, 2nd ed., Graduate Studies in Mathematics, vol. 14, American Mathematical Society, Providence, RI, 2001. MR**1817225****14.**Antonios D. Melas,*A lower bound for sums of eigenvalues of the Laplacian*, Proc. Amer. Math. Soc.**131**(2003), no. 2, 631–636 (electronic). MR**1933356**, 10.1090/S0002-9939-02-06834-X**15.**Timo Weidl,*Improved Berezin-Li-Yau inequalities with a remainder term*, Spectral theory of differential operators, Amer. Math. Soc. Transl. Ser. 2, vol. 225, Amer. Math. Soc., Providence, RI, 2008, pp. 253–263. MR**2509788**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2010):
35P15,
35S99

Retrieve articles in all journals with MSC (2010): 35P15, 35S99

Additional Information

**Selma Yildirim Yolcu**

Affiliation:
School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332

Address at time of publication:
Department of Mathematics, Georgia College & State University, Milledgeville, Georgia 31061; (after August 2010) Department of Mathematics, Purdue University, West Lafayette, Indiana 47907

Email:
selma@math.gatech.edu, selma.yildirim-yolcu@gcsu.edu

DOI:
https://doi.org/10.1090/S0002-9939-2010-10419-7

Keywords:
Fractional Laplacian,
Weyl law,
universal bounds,
Klein-Gordon operator,
Berezin-Li-Yau inequality

Received by editor(s):
September 19, 2009

Received by editor(s) in revised form:
January 24, 2010

Published electronically:
May 18, 2010

Dedicated:
This paper is dedicated to Professor Evans M. Harrell

Communicated by:
Matthew J. Gursky

Article copyright:
© Copyright 2010
American Mathematical Society