An improvement to a Berezin-Li-Yau type inequality

Author:
Selma Yildirim Yolcu

Journal:
Proc. Amer. Math. Soc. **138** (2010), 4059-4066

MSC (2010):
Primary 35P15; Secondary 35S99

DOI:
https://doi.org/10.1090/S0002-9939-2010-10419-7

Published electronically:
May 18, 2010

MathSciNet review:
2679626

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this article we improve a lower bound for (a Berezin-Li-Yau type inequality) that appeared in an earlier paper of Harrell and Yolcu. Here denotes the th eigenvalue of the Klein Gordon Hamiltonian when restricted to a bounded set . can also be described as the generator of the Cauchy stochastic process with a killing condition on . To do this, we adapt the proof of Melas, who improved the estimate for the bound of , where denotes the th eigenvalue of the Dirichlet Laplacian on a bounded domain in .

**1.**N.I. Akhiezer and I.M. Glazman,*Theory of Linear Operators in Hilbert Space*, Vols. I, II, Pitman, 1981. MR**0615736 (83i:47001a)**, MR**0615737 (83i:47001b)****2.**R. Bañuelos and T. Kulczycki,*The Cauchy process and the Steklov problem*, J. Funct. Analysis**211(2)**(2004) 355-423. MR**2056835 (2005b:60124)****3.**R. Bañuelos and T. Kulczycki,*Eigenvalue gaps for the Cauchy process and a Poincaré inequality*, J. Funct. Analysis**234(1)**(2006) 199-225. MR**2214145 (2007c:60050)****4.**R. Bañuelos, T. Kulczycki and Bartłomiej Siudeja,*On the trace of symmetric stable processes on Lipschitz domains*, J. Funct. Analysis**257(10)**(2009) 3329-3352. MR**2568694****5.**F. A. Berezin,*Covariant and contravariant symbols of operators*, Izv. Akad. Nauk SSSR Ser. Mat.**36**(1972) 1134-1167. MR**0350504 (50:2996)****6.**R. Blumenthal and R. Getoor,*The asymptotic distribution of the eigenvalues for a class of Markov operators*, Pacific J. Math.**9**(1959) 399-408. MR**0107298 (21:6023)****7.**E. M. Harrell II and L. Hermi,*Differential inequalities for Riesz means and Weyl-type bounds for eigenvalues*, J. Funct. Analysis**254**(2008) 3173-3191. MR**2418623 (2009f:47067)****8.**E. M. Harrell II and S. Yildirim Yolcu,*Eigenvalue inequalities for Klein-Gordon operators*, J. Funct. Analysis,**256(12)**(2009) 3977-3995. MR**2521917****9.**Alexei A. Ilyin,*Lower bounds for the spectrum of the Laplace and Stokes operators*, Discrete and Continuous Dynamical Systems, Volume 28, Number 1, September 2010, pp. 131-146. arXiv:0909.2818v1.**10.**H. Kovařík, S. Vugalter and T. Weidl,*Two dimensional Berezin-Li-Yau inequalities with a correction term*, Comm. Math. Phys.,**287(3)**(2009), 959-981. MR**2486669****11.**A. Laptev and T. Weidl,*Recent results on Lieb-Thirring inequalities*, Journées ``Équations aux Dérivées Partielles'' (La Chapelle sur Erdre, 2000), Exp. No. XX, 14 pp., Univ. Nantes, Nantes, 2000. MR**1775696 (2001j:81064)****12.**P. Li and S.-T. Yau,*On the Schrödinger equation and the eigenvalue problem*, Comm. Math. Phys.**88**(1983) 309-318. MR**701919 (84k:58225)****13.**E. H. Lieb and M. Loss,*Analysis*, second edition. Graduate Studies in Mathematics**14**, Providence, RI: Amer. Math. Soc. (2001). MR**1817225 (2001i:00001)****14.**A. D. Melas,*A lower bound for sums of eigenvalues of the Laplacian*, Proceedings of the American Mathematical Society**131(2)**(2003) 631-636. MR**1933356 (2003i:35218)****15.**T. Weidl,*Improved Berezin-Li-Yau inequalities with a remainder term*, in Spectral Theory of Differential Operators, Amer. Math. Soc. Transl. Ser. 2,**225**, Providence, RI: Amer. Math. Soc. (2008), 253-263. MR**2509788**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2010):
35P15,
35S99

Retrieve articles in all journals with MSC (2010): 35P15, 35S99

Additional Information

**Selma Yildirim Yolcu**

Affiliation:
School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332

Address at time of publication:
Department of Mathematics, Georgia College & State University, Milledgeville, Georgia 31061; (after August 2010) Department of Mathematics, Purdue University, West Lafayette, Indiana 47907

Email:
selma@math.gatech.edu, selma.yildirim-yolcu@gcsu.edu

DOI:
https://doi.org/10.1090/S0002-9939-2010-10419-7

Keywords:
Fractional Laplacian,
Weyl law,
universal bounds,
Klein-Gordon operator,
Berezin-Li-Yau inequality

Received by editor(s):
September 19, 2009

Received by editor(s) in revised form:
January 24, 2010

Published electronically:
May 18, 2010

Dedicated:
This paper is dedicated to Professor Evans M. Harrell

Communicated by:
Matthew J. Gursky

Article copyright:
© Copyright 2010
American Mathematical Society