A NOTE ON COMPLETE RESOLUTIONS

FOTINI DEMBEGIOTI AND OLYMPIA TALELLI

(Communicated by Birge Huisgen-Zimmermann)

Abstract. It is shown that the Eckmann-Shapiro Lemma holds for complete cohomology if and only if complete cohomology can be calculated using complete resolutions. It is also shown that for an \(LH \) group \(G \) the kernels in a complete resolution of a \(ZG \)-module coincide with Benson’s class of cofibrant modules.

1. Introduction

Let \(G \) be a group and \(ZG \) its integral group ring. A \(ZG \)-module \(M \) is said to admit a complete resolution \((F, P, n)\) of coincidence index \(n \) if there is an acyclic complex \(F = \{(F_i, \vartheta_i) | i \in \mathbb{Z} \} \) of projective modules and a projective resolution \(P = \{(P_i, d_i) | i \in \mathbb{Z}, i \geq 0 \} \) of \(M \) such that \(F \) and \(P \) coincide in dimensions greater than \(n \); that is,

\[
\begin{align*}
F : & \cdots \to F_{n+1} \to F_n \xrightarrow{\partial_n} F_{n-1} \to \cdots \to F_0 \to F_{-1} \to F_{-2} \to \cdots \\
\| & \| \\
\| & \| \\
\| & \| \\
\| & \| \\
P : & \cdots \to P_{n+1} \to P_n \xrightarrow{d_n} P_{n-1} \to \cdots \to P_0 \to M \to 0
\end{align*}
\]

A \(ZG \)-module \(M \) is said to admit a complete resolution in the strong sense if there is a complete resolution \((F, P, n)\) with \(\text{Hom}_{ZG}(F, Q) \) acyclic for every \(ZG \)-projective module \(Q \).

It was shown by Cornick and Kropholler in \cite{7} that if \(M \) admits a complete resolution \((F, P, n)\) in the strong sense, then

\[
\widehat{\text{Ext}}_{ZG}(M, B) \simeq H^*(\text{Hom}_{ZG}(F, B))
\]

where \(\widehat{\text{Ext}}^*_{ZG}(M, _ \) is the \(P \)-completion of \(\text{Ext}^*_{ZG}(M, _ \) , defined by Mislin for any group \(G \) \cite{13} as

\[
\widehat{\text{Ext}}^k_{ZG}(M, B) = \lim_{r \to k} S_{-r}^m \text{Ext}^r_{ZG}(M, B)
\]

where \(S_{-m}^T \) is the \(m \)-th left satellite of a functor \(T \).

Alternative but equivalent definitions of the complete \(\widehat{\text{Ext}} \)-groups were given by Benson and Carlson \cite{5} and Vogel \cite{9}.
Complete cohomology $\hat{H}^*(G, _)$ is defined as $\hat{\text{Ext}}_{Z^G}^*(Z, _)$, where Z is the trivial ZG-module, generalizing the Tate cohomology defined for finite groups and the Farrell-Tate cohomology defined for groups that have a finite-index subgroup of finite cohomological dimension.

A group G is said to admit a complete resolution if the trivial ZG-module Z admits a complete resolution.

It turns out that G admits a complete resolution in the strong sense if and only if the generalized cohomological dimension cd_G is finite [3], where

$$\text{cd}_G = \sup \{ n \in \mathbb{N} \mid \exists M \text{-free, } \exists F \text{-free : } \text{Ext}_{ZG}^n(M, F) \neq 0 \}$$

was defined by Ikenaga in his study of generalized Farrell-Tate cohomology in [10].

Note that $\text{cd}_G = \text{Gcd}_2 G$ [3], the Gorenstein projective dimension of G, which is defined via resolutions of the trivial ZG-module Z by Gorenstein projective modules and is related to the G-dimension defined by Auslander in [1] (see also [2] and [6]).

A ZG-module M is said to be Gorenstein projective if it admits a complete resolution in the strong sense of coincidence index 0, i.e. if M is a kernel in a complete resolution in the strong sense.

Complete resolutions do not always exist; for example, if G has a free abelian subgroup of infinite rank, then G does not admit a complete resolution [14].

If the complete cohomology can be calculated using complete resolutions, then one has certain advantages such as the Eckmann-Shapiro Lemma and certain spectral sequences.

Here we show that the validity of the Eckmann-Shapiro Lemma for complete cohomology actually implies that complete resolutions exist and that complete cohomology can be calculated using complete resolutions:

Theorem A. The following are equivalent for a group G.

1. The Eckmann-Shapiro Lemma holds for complete cohomology.
2. G has a complete resolution and every complete resolution of G is a complete resolution in the strong sense.
3. Complete cohomology can be calculated using complete resolutions.

We also show the following:

Theorem B. If a ZG-module M is a kernel in a complete resolution and A is a ZG-module that is ZF-projective for every finite subgroup F of G, then $M \otimes A$ (with diagonal G-action) is projective as a ZH-module for every $LH\mathbb{F}$-subgroup H of G.

Theorem B in particular implies the two results below:

Corollary C. If G is an $LH\mathbb{F}$-group, then the kernels of a complete resolution of a ZG-module coincide with the cofibrant modules.

Corollary D. If G is an $LH\mathbb{F}$-group, then every complete resolution of a ZG-module M is a complete resolution in the strong sense.

Cofibrant modules were introduced by Benson in [4] for his study of ZG-modules that admit a projective resolution by finitely generated projective modules, when G is an $LH\mathbb{F}$-group. They are defined as follows: for any group G, a ZG-module M is said to be cofibrant if $M \otimes B(G, \mathbb{Z})$ is a projective ZG-module, where $B(G, \mathbb{Z})$ is the set of bounded functions from G to \mathbb{Z}.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
The class \mathcal{H}_F was defined by Kropholler in [11] as the smallest class of groups which contains the class of finite groups and is such that whenever a group G admits a finite dimensional contractible G-CW-complex with stabilizers in \mathcal{H}_F, we have that G is in \mathcal{H}_F. \mathcal{LH}_F is the class of groups G such that every finitely generated subgroup of G is in \mathcal{H}_F. The class \mathcal{LH}_F includes, for example, all soluble-by-finite groups and all groups with a faithful representation as endomorphisms of a Noetherian module over a commutative ring, and is extension-closed, closed under ascending unions and closed under amalgamated free products and HNN extensions.

In [3] it was proved that if G is an \mathcal{LH}_F-group and M is a $\mathbb{Z}G$-module that admits a projective resolution by finitely generated projective modules, then M is a Gorenstein projective $\mathbb{Z}G$-module if and only if it is a cofibrant module.

Corollary C shows that for \mathcal{LH}_F-groups the Gorenstein projective modules coincide with the cofibrant modules. We believe the following to be true:

Conjecture A. For any group G the Gorenstein projective modules coincide with the cofibrant modules.

Conjecture B (see also Conj. B in [15]). A $\mathbb{Z}G$-module M admits a complete resolution if and only if it admits a complete resolution in the strong sense.

Conjecture B in particular implies that Gorenstein projectivity is a subgroup-closed property. Here we show that this is so if the subgroup is in \mathcal{LH}_F (Corollary 2.2).

2. **Proof of the results**

Proof of Theorem A. (1) \Rightarrow (2): Assume that the Eckmann-Shapiro Lemma holds for the complete cohomology of G, i.e.

$$\hat{\text{Ext}}^*_{\mathbb{Z}G}(A, \text{Hom}_{\mathbb{Z}H}(\mathbb{Z}G, B)) \simeq \hat{\text{Ext}}^*_{\mathbb{Z}H}(A|_{\mathbb{Z}H}, B)$$

for every $\mathbb{Z}G$-module A, every $\mathbb{Z}H$-module B and every subgroup $H \leq G$. Applying the Eckmann-Shapiro Lemma with the trivial subgroup $H = 1$, we have that $\hat{\text{Ext}}^0_{\mathbb{Z}G}(A, \text{Hom}_{\mathbb{Z}}(\mathbb{Z}G, B)) \simeq \hat{\text{Ext}}^0_{\mathbb{Z}}(A|_\mathbb{Z}, B)$ for every $\mathbb{Z}G$-module A and every \mathbb{Z}-module B. We have that $\hat{\text{Ext}}^0_{\mathbb{Z}}(A|_\mathbb{Z}, B) = 0$, since A and B have finite projective dimension over \mathbb{Z} [11, 4.2].

It follows that $\hat{\text{Ext}}^0_{\mathbb{Z}G}(A, \text{Hom}_{\mathbb{Z}}(\mathbb{Z}G, A)) = 0$ for any $\mathbb{Z}G$-module A. For any $\mathbb{Z}G$-module A there is a canonical injection $A \hookrightarrow \text{Hom}_{\mathbb{Z}}(\mathbb{Z}G, A)$. So, if I is injective, then it is a direct summand of $\text{Hom}_{\mathbb{Z}}(\mathbb{Z}G, I)$. It follows that $\hat{\text{Ext}}^0_{\mathbb{Z}G}(I, I) = 0$, and thus I has finite projective dimension [11, 4.2]. It is easy to see that the supremum of the projective dimensions of the injective $\mathbb{Z}G$-modules, spil $\mathbb{Z}G$, is finite; hence (2) follows from [8, §4].

(2) \Rightarrow (3) by Theorem 1.2 of [7].

(3) \Rightarrow (1): It follows from the implication (4) \Rightarrow (2) of Theorem 2.2 in [15] and [7] that every $\mathbb{Z}G$-module M admits a complete resolution $(\mathcal{F}, \mathcal{P}, n)$ in the strong sense and $\hat{\text{Ext}}^n_{\mathbb{Z}G}(M, B) \simeq H^n(\text{Hom}_{\mathbb{Z}G}(\mathcal{F}, B))$. Clearly the computation of the complete cohomology via complete resolutions implies the validity of the Eckmann-Shapiro Lemma.

Lemma 2.1. Let G be a group.
(a) If $M_i, i \in I$, is a family of $\mathbb{Z}G$-modules that admit complete resolutions (in the strong sense) of coincidence index 0, then the direct sum $\bigoplus_{i \in I} M_i$ admits a complete resolution (in the strong sense) of coincidence index 0.

(b) If M admits a complete resolution of coincidence index n and A is a \mathbb{Z}-free $\mathbb{Z}G$-module, then $M \otimes A$ (with diagonal G-action) admits a complete resolution of coincidence index n.

(c) Let $\{(F_i, \vartheta_i), i \in \mathbb{Z}\}$ be an acyclic complex of projective $\mathbb{Z}G$-modules with kernels $M_i, i \in \mathbb{Z}$. If there is a bound on the projective dimensions of the M_i’s, then M_i is projective for every $i \in \mathbb{Z}$.

Proof. The proofs of (a) and (b) are straightforward.

(c) Let $pd_{\mathbb{Z}G}M_r = k > 0$ for some $r \in \mathbb{Z}$. It follows from the short exact sequence $0 \to M_r \to F_r \to M_{r-1} \to 0$ that $pd_{\mathbb{Z}G}M_{r-1} = k + 1$ and thus inductively $pd_{\mathbb{Z}G}M_{r-s} = k + s$ for all $s \in \mathbb{N}$, which is a contradiction since there is a bound on the projective dimensions of the M_i’s. □

Proof of Theorem B. We first prove the theorem for $\mathbb{H}_{\beta, \gamma}$-subgroups, using transfinite induction on the ordinal number α such that the subgroup H belongs to $\mathbb{H}_{\alpha, \gamma}$.

For $\alpha = 0$, $M \otimes A$ is projective over any finite subgroup of G, because M is \mathbb{Z}-free and A is projective over the finite subgroups of G. Assume that the result is true for all $\mathbb{H}_{\beta, \gamma}$-subgroups of G for all $\beta < \alpha$, and let H be a $\mathbb{H}_{\alpha, \gamma}$-subgroup of G.

There is an exact sequence of ZH-modules

$$0 \to C_r \to \cdots \to C_0 \to \mathbb{Z} \to 0$$

where each C_i is a direct sum of modules of the form $\mathbb{Z}[H/F]$ with $F \leq H$ and $F \in \mathbb{H}_{\beta, \gamma}$ for $\beta < \alpha$. By the inductive hypothesis, $M \otimes A$ is projective over each $\mathbb{Z}F$, so each $\mathbb{Z}[H/F] \otimes M \otimes A$ is projective over ZH and thus each $C_i \otimes M \otimes A$ is projective over ZH. Tensoring the above sequence with $M \otimes A$ gives us an exact sequence

$$0 \to C_r \otimes M \otimes A \to \cdots \to C_0 \otimes M \otimes A \to M \otimes A \to 0.$$

It follows that $pd_{ZH}M \otimes A < \infty$ for any $\mathbb{Z}G$-module M that has a complete resolution of coincidence index 0. If there is not a bound on these projective dimensions, there is a family of $\mathbb{Z}G$-modules $M_n, n \in \mathbb{N}$, that have complete resolutions of coincidence index 0 and are such that $pd_{ZH}M_n \otimes A \geq n$ for all $n \in \mathbb{N}$. Then the direct sum $M = \bigoplus_{n \in \mathbb{N}} M_n$ has a complete resolution of coincidence index 0 by Lemma 2.1(a), and $pd_{ZH}M \otimes A \geq pd_{ZH}M_n \otimes A \geq n$ for all $n \in \mathbb{N}$ so that $pd_{ZH}M \otimes A$ is infinite, which is a contradiction. It follows that there is a bound on the projective dimension $pd_{ZH}M \otimes A$ where M is a $\mathbb{Z}G$-module that has a complete resolution of coincidence index 0. From Lemma 2.1 parts (b) and (c), we obtain that $M \otimes A$ is projective as a ZH-module.

Next we prove the result for $\mathbb{LH}_{\beta, \gamma}$-subgroups, using induction on the cardinality of the subgroup. If H is a countable subgroup, then it belongs to \mathbb{H}_{γ}, so the result has been proved. Assume that H is uncountable and that the result is true for any subgroup with cardinality strictly smaller than $|H|$, and let M be a $\mathbb{Z}G$-module that has a complete resolution of coincidence index 0. Since H is uncountable it can be expressed as the union of an ascending chain of subgroups $H_\alpha, \alpha < \gamma$, for some ordinal number γ such that each H_α has cardinality strictly smaller than $|H|$. By the inductive hypothesis $M \otimes A$ is projective over each ZH_α, so by Lemma 5.6 in [3] we have $pd_{ZH}M \otimes A \leq 1$. Thus we have proved that $M \otimes A$ has finite projective dimension over ZH, for any $\mathbb{Z}G$-module M that has a complete resolution
of coincidence index 0. It follows from the above argument that $M \otimes A$ is projective over H, for any $\mathbb{Z}G$-module M that has a complete resolution of coincidence index 0.

Proof of Corollary C. Let P_\ast be a complete resolution with kernels $M_i, i \in \mathbb{Z}$. It is known [12] that $B(G, \mathbb{Z})$ is a projective ZF-module for any finite subgroup F of G. Hence it follows from Theorem B that each M_i is cofibrant. The converse was shown in [7].

Proof of Corollary D. Let P_\ast be a complete resolution with kernels $M_i, i \in \mathbb{Z}$. It follows from Corollary C that each M_i is a cofibrant module. There is a \mathbb{Z}-split $\mathbb{Z}G$-monomorphism $\mathbb{Z} \rightarrow B(G, \mathbb{Z})$; hence if Q is a projective $\mathbb{Z}G$-module, then Q is a $\mathbb{Z}G$-direct summand of $\text{Hom}_{\mathbb{Z}}(B(G, \mathbb{Z}), Q)$ (with diagonal action), and so the complex $\text{Hom}_{\mathbb{Z}}(P_\ast, Q)$ is a direct summand of the complex

$$\text{Hom}_{\mathbb{Z}}(P_\ast, \text{Hom}_{\mathbb{Z}}(B(G, \mathbb{Z}), Q)) \simeq \text{Hom}_{\mathbb{Z}}(P_\ast \otimes B(G, \mathbb{Z}), Q).$$

This complex is exact because $M_i \otimes B(G, \mathbb{Z})$ are projective $\mathbb{Z}G$-modules, so $P_\ast \otimes B(G, \mathbb{Z})$ splits.

It is not known whether Gorenstein projectivity is a subgroup-closed property. Here we show that this is so if the subgroup is an \textbf{LH}_F-group.

Corollary 2.2. If G is a group and M is a Gorenstein projective module, then $M|_H$ is Gorenstein projective for any \textbf{LH}_F-subgroup H of G.

Proof. Since M is Gorenstein projective it admits a complete resolution in the strong sense of coincidence index 0 over $\mathbb{Z}G$, which is a complete resolution of coincidence index 0 over $\mathbb{Z}H$ for any subgroup H of G. If the subgroup is in \textbf{LH}_F, then the resolution is a complete resolution in the strong sense by Corollary D. Hence $M|_H$ is a Gorenstein projective module.

References

MR1246274 (94j:20051b)

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ATHENS, 15784 ATHENS, GREECE

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ATHENS, 15784 ATHENS, GREECE