Recovering singular integrals from Haar shifts

Author:
Armen Vagharshakyan

Journal:
Proc. Amer. Math. Soc. **138** (2010), 4303-4309

MSC (2010):
Primary 42B20, 42A45

Published electronically:
June 15, 2010

MathSciNet review:
2680056

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We recover one-dimensional Calderón-Zygmund convolution operators with sufficiently smooth kernels by means of a properly chosen averaging of certain dyadic shift operators. As a corollary, a sharp inequality for these Calderón-Zygmund operators is derived from a corresponding inequality for dyadic shift operators.

**[1]**Tadeusz Figiel,*Singular integral operators: a martingale approach*, Geometry of Banach spaces (Strobl, 1989), 1990, pp. 95-110.**[2]**Tuomas Hytönen,*On Petermichl’s dyadic shift and the Hilbert transform*, C. R. Math. Acad. Sci. Paris**346**(2008), no. 21-22, 1133–1136 (English, with English and French summaries). MR**2464252**, 10.1016/j.crma.2008.09.021**[3]**Oliver Dragičević and Alexander Volberg,*Sharp estimate of the Ahlfors-Beurling operator via averaging martingale transforms*, Michigan Math. J.**[4]**Michael Lacey, Stephanie Petermichl, and Maria Carmen Reguera,*Sharp Inequality for Haar Shift Operators*, Math. Ann., to appear (2010), available at`http://arxiv.org/abs/0906.1941`.**[5]**Michael T. Lacey, Stefanie Petermichl, Jill C. Pipher, and Brett D. Wick,*Multiparameter Riesz commutators*, Amer. J. Math.**131**(2009), no. 3, 731–769. MR**2530853**, 10.1353/ajm.0.0059**[6]**Michael T. Lacey, Jill C. Pipher, Stefanie Petermichl, and Brett D. Wick,*Iterated Riesz Commutators: A Simple Proof of Boundedness*, Proceedings of 8th Intl. Conf. on Harm. Analysis and PDE at El Escorial, Madrid (Spain), 2008, available at`http://www.arxiv.org/abs/0808.0832`.**[7]**Andrei K. Lerner, Sheldy Ombrosi, and Carlos Pérez,*bounds for Calderón-Zygmund operators related to a problem of Muckenhoupt and Wheeden*, Math. Res. Lett.**[8]**F. Nazarov, S. Treil, and A. Volberg,*The Bellman functions and two-weight inequalities for Haar multipliers*, J. Amer. Math. Soc.**12**(1999), no. 4, 909–928. MR**1685781**, 10.1090/S0894-0347-99-00310-0**[9]**F. Nazarov, S. Treil, and A. Volberg,*Two weight inequalities for individual Haar multipliers and other well localized operators*, Math. Res. Lett.**15**(2008), no. 3, 583–597. MR**2407233**, 10.4310/MRL.2008.v15.n3.a16**[10]**F. Nazarov, S. Treil, and A. Volberg,*The 𝑇𝑏-theorem on non-homogeneous spaces*, Acta Math.**190**(2003), no. 2, 151–239. MR**1998349**, 10.1007/BF02392690**[11]**Stefanie Petermichl,*Dyadic shifts and a logarithmic estimate for Hankel operators with matrix symbol*, C. R. Acad. Sci. Paris Sér. I Math.**330**(2000), no. 6, 455–460 (English, with English and French summaries). MR**1756958**, 10.1016/S0764-4442(00)00162-2**[12]**Stefanie Petermichl,*The sharp weighted bound for the Riesz transforms*, Proc. Amer. Math. Soc.**136**(2008), no. 4, 1237–1249. MR**2367098**, 10.1090/S0002-9939-07-08934-4**[13]**S. Petermichl, S. Treil, and A. Volberg,*Why the Riesz transforms are averages of the dyadic shifts?*, Proceedings of the 6th International Conference on Harmonic Analysis and Partial Differential Equations (El Escorial, 2000), 2002, pp. 209–228. MR**1964822**, 10.5565/PUBLMAT_Esco02_10**[14]**S. Petermichl,*The sharp bound for the Hilbert transform on weighted Lebesgue spaces in terms of the classical 𝐴_{𝑝} characteristic*, Amer. J. Math.**129**(2007), no. 5, 1355–1375. MR**2354322**, 10.1353/ajm.2007.0036

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2010):
42B20,
42A45

Retrieve articles in all journals with MSC (2010): 42B20, 42A45

Additional Information

**Armen Vagharshakyan**

Affiliation:
School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332

Email:
armenv@math.gatech.edu, armen@math.brown.edu

DOI:
https://doi.org/10.1090/S0002-9939-2010-10426-4

Received by editor(s):
January 28, 2010

Published electronically:
June 15, 2010

Additional Notes:
This research was supported in part by NSF grant 0456611

Communicated by:
Michael T. Lacey

Article copyright:
© Copyright 2010
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.