Geometric properties of points on modular hyperbolas

Authors:
Kevin Ford, Mizan R. Khan and Igor E. Shparlinski

Journal:
Proc. Amer. Math. Soc. **138** (2010), 4177-4185

MSC (2010):
Primary 11A07; Secondary 11H06, 11N69

Published electronically:
July 9, 2010

MathSciNet review:
2680044

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Given an integer , let be the set

**1.**W. R. Alford, Andrew Granville, and Carl Pomerance,*There are infinitely many Carmichael numbers*, Ann. of Math. (2)**139**(1994), no. 3, 703–722. MR**1283874**, 10.2307/2118576**2.**George E. Andrews,*A lower bound for the volume of strictly convex bodies with many boundary lattice points*, Trans. Amer. Math. Soc.**106**(1963), 270–279. MR**0143105**, 10.1090/S0002-9947-1963-0143105-7**3.**Kevin Ford,*The distribution of integers with a divisor in a given interval*, Ann. of Math. (2)**168**(2008), no. 2, 367–433. MR**2434882**, 10.4007/annals.2008.168.367**4.**Kevin Ford, Mizan R. Khan, Igor E. Shparlinski, and Christian L. Yankov,*On the maximal difference between an element and its inverse in residue rings*, Proc. Amer. Math. Soc.**133**(2005), no. 12, 3463–3468. MR**2163580**, 10.1090/S0002-9939-05-07962-1**5.**Étienne Fouvry,*Sur le problème des diviseurs de Titchmarsh*, J. Reine Angew. Math.**357**(1985), 51–76 (French). MR**783533**, 10.1515/crll.1985.357.51**6.**Glyn Harman,*On the number of Carmichael numbers up to 𝑥*, Bull. London Math. Soc.**37**(2005), no. 5, 641–650. MR**2164825**, 10.1112/S0024609305004686**7.**D. R. Heath-Brown,*Zero-free regions for Dirichlet 𝐿-functions, and the least prime in an arithmetic progression*, Proc. London Math. Soc. (3)**64**(1992), no. 2, 265–338. MR**1143227**, 10.1112/plms/s3-64.2.265**8.**Mizan R. Khan and Igor E. Shparlinski,*On the maximal difference between an element and its inverse modulo 𝑛*, Period. Math. Hungar.**47**(2003), no. 1-2, 111–117. MR**2024977**, 10.1023/B:MAHU.0000010815.14847.96**9.**Mizan R. Khan, Igor E. Shparlinski, and Christian L. Yankov,*On the convex closure of the graph of modular inversions*, Experiment. Math.**17**(2008), no. 1, 91–104. MR**2410119****10.**Igor E. Shparlinski,*On the distribution of points on multidimensional modular hyperbolas*, Proc. Japan Acad. Ser. A Math. Sci.**83**(2007), no. 2, 5–9. MR**2303621****11.**Igor E. Shparlinski,*Distribution of modular inverses and multiples of small integers and the Sato-Tate conjecture on average*, Michigan Math. J.**56**(2008), no. 1, 99–111. MR**2433659**, 10.1307/mmj/1213972400**12.**Terence Tao,*Structure and randomness*, American Mathematical Society, Providence, RI, 2008. Pages from year one of a mathematical blog. MR**2459552**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2010):
11A07,
11H06,
11N69

Retrieve articles in all journals with MSC (2010): 11A07, 11H06, 11N69

Additional Information

**Kevin Ford**

Affiliation:
Department of Mathematics, University of Illinois at Urbana-Champaign, 1409 West Green Street, Urbana, Illinois 61801

Email:
ford@math.uiuc.edu

**Mizan R. Khan**

Affiliation:
Department of Mathematics and Computer Science, Eastern Connecticut State University, Willimantic, Connecticut 06226

Email:
khanm@easternct.edu

**Igor E. Shparlinski**

Affiliation:
Department of Computing, Macquarie University, Sydney, NSW 2109, Australia

Email:
igor@ics.mq.edu.au

DOI:
http://dx.doi.org/10.1090/S0002-9939-2010-10561-0

Received by editor(s):
February 11, 2010

Published electronically:
July 9, 2010

Additional Notes:
The research of the first author was supported in part by NSF grants DMS-0555367 and DMS-0901339.

The research of the third author was supported by ARC grants DP0556431 and DP1092835.

Communicated by:
Matthew A. Papanikolas

Article copyright:
© Copyright 2010
American Mathematical Society