Geometric properties of points on modular hyperbolas

Authors:
Kevin Ford, Mizan R. Khan and Igor E. Shparlinski

Journal:
Proc. Amer. Math. Soc. **138** (2010), 4177-4185

MSC (2010):
Primary 11A07; Secondary 11H06, 11N69

DOI:
https://doi.org/10.1090/S0002-9939-2010-10561-0

Published electronically:
July 9, 2010

MathSciNet review:
2680044

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Given an integer , let be the set

**1.**W. R. Alford, A. Granville and C. Pomerance,*There are infinitely many Carmichael numbers*, Annals of Math. (2)**139**(1994), 703-722. MR**1283874 (95k:11114)****2.**G. Andrews,*A lower bound for the volume of strictly convex bodies with many boundary lattice points*, Trans. Amer. Math. Soc.**106**(1963), 270-279. MR**0143105 (26:670)****3.**K. Ford,*The distribution of integers with a divisor in a given interval*, Annals. of Math. (2)**168**(2008), 367-433. MR**2434882 (2009m:11152)****4.**K. Ford, M. R. Khan, I. E. Shparlinski and C. L. Yankov,*On the maximal difference between an element and its inverse in residue rings*, Proc. Amer. Math. Soc.**133**(2005), 3463-3468. MR**2163580 (2006c:11108)****5.**É. Fouvry,*Sur le problème des diviseurs de Titchmarsh*, J. Reine Angew. Math.**357**(1985), 51-76. MR**783533 (87b:11090)****6.**G. Harman,*On the number of Carmichael numbers up to*, Bull. London Math. Soc.**37**(2005), 641-650. MR**2164825 (2006d:11106)****7.**D. R. Heath-Brown,*Zero-free regions for Dirichlet -functions, and the least prime in an arithmetic progression*, Proc. London Math. Soc.**64**(1992) 265-338. MR**1143227 (93a:11075)****8.**M. R. Khan and I. E. Shparlinski,*On the maximal difference between an element and its inverse modulo*, Periodica Math. Hungarica**47**(2003), 111-117. MR**2024977 (2004k:11006)****9.**M. R. Khan, I. E. Shparlinski and C. L. Yankov,*On the convex closure of the graph of modular inversions*, Experimental Math.**17**(2008), 91-104. MR**2410119 (2009e:11003)****10.**I. E. Shparlinski,*On the distribution of points on multidimensional modular hyperbolas*, Proc. Japan Acad. Sci., Ser. A**83**(2007), 5-9. MR**2303621 (2008g:11161)****11.**I. E. Shparlinski,*Distribution of modular inverses and multiples of small integers and the Sato-Tate conjecture on average*, Michigan Math. J.**56**(2008), 99-111. MR**2433659 (2009e:11154)****12.**T. Tao, Structure and Randomness, Amer. Math. Soc., Providence, RI, 2008. MR**2459552**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2010):
11A07,
11H06,
11N69

Retrieve articles in all journals with MSC (2010): 11A07, 11H06, 11N69

Additional Information

**Kevin Ford**

Affiliation:
Department of Mathematics, University of Illinois at Urbana-Champaign, 1409 West Green Street, Urbana, Illinois 61801

Email:
ford@math.uiuc.edu

**Mizan R. Khan**

Affiliation:
Department of Mathematics and Computer Science, Eastern Connecticut State University, Willimantic, Connecticut 06226

Email:
khanm@easternct.edu

**Igor E. Shparlinski**

Affiliation:
Department of Computing, Macquarie University, Sydney, NSW 2109, Australia

Email:
igor@ics.mq.edu.au

DOI:
https://doi.org/10.1090/S0002-9939-2010-10561-0

Received by editor(s):
February 11, 2010

Published electronically:
July 9, 2010

Additional Notes:
The research of the first author was supported in part by NSF grants DMS-0555367 and DMS-0901339.

The research of the third author was supported by ARC grants DP0556431 and DP1092835.

Communicated by:
Matthew A. Papanikolas

Article copyright:
© Copyright 2010
American Mathematical Society