Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

On the spatial asymptotics of solutions of the Ablowitz-Ladik hierarchy


Author: Johanna Michor
Journal: Proc. Amer. Math. Soc. 138 (2010), 4249-4258
MSC (2010): Primary 37K40, 37K15; Secondary 35Q55, 37K10
Published electronically: July 20, 2010
MathSciNet review: 2680051
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that for decaying solutions of the Ablowitz-Ladik system, the leading asymptotic term is time independent. In addition, two arbitrary bounded solutions of the Ablowitz-Ladik system which are asymptotically close at the initial time stay close. All results are also derived for the associated hierarchy.


References [Enhancements On Off] (What's this?)

  • 1. Mark J. Ablowitz, Gino Biondini, and Barbara Prinari, Inverse scattering transform for the integrable discrete nonlinear Schrödinger equation with nonvanishing boundary conditions, Inverse Problems 23 (2007), no. 4, 1711–1758. MR 2348731, 10.1088/0266-5611/23/4/021
  • 2. M. J. Ablowitz and P. A. Clarkson, Solitons, nonlinear evolution equations and inverse scattering, London Mathematical Society Lecture Note Series, vol. 149, Cambridge University Press, Cambridge, 1991. MR 1149378
  • 3. M. J. Ablowitz and J. F. Ladik, Nonlinear differential-difference equations, J. Mathematical Phys. 16 (1975), 598–603. MR 0377223
  • 4. M. J. Ablowitz and J. F. Ladik, Nonlinear differential-difference equations and Fourier analysis, J. Mathematical Phys. 17 (1976), no. 6, 1011–1018. MR 0427867
  • 5. M. J. Ablowitz and J. F. Ladik, A nonlinear difference scheme and inverse scattering, Studies in Appl. Math. 55 (1976), no. 3, 213–229. MR 0471341
  • 6. M. J. Ablowitz and J. F. Ladik, On the solution of a class of nonlinear partial difference equations, Studies in Appl. Math. 57 (1976/77), no. 1, 1–12. MR 0492975
  • 7. M. J. Ablowitz, B. Prinari, and A. D. Trubatch, Discrete and continuous nonlinear Schrödinger systems, London Mathematical Society Lecture Note Series, vol. 302, Cambridge University Press, Cambridge, 2004. MR 2040621
  • 8. R. Abraham, J. E. Marsden, and T. Ratiu, Manifolds, tensor analysis, and applications, 2nd ed., Applied Mathematical Sciences, vol. 75, Springer-Verlag, New York, 1988. MR 960687
  • 9. I. N. Bondareva, The Korteweg-de Vries equation in classes of growing functions with a given asymptotic behavior as \mid𝑥\mid→∞, Mat. Sb. (N.S.) 122(164) (1983), no. 2, 131–141 (Russian). MR 717670
  • 10. I. N. Bondareva and M. A. Shubin, Growing asymptotic solutions of the Korteweg-de Vries equation and of its higher analogues, Dokl. Akad. Nauk SSSR 267 (1982), no. 5, 1035–1038 (Russian). MR 685832
  • 11. Klaus Deimling, Ordinary differential equations in Banach spaces, Lecture Notes in Mathematics, Vol. 596, Springer-Verlag, Berlin-New York, 1977. MR 0463601
  • 12. C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura, A method for solving the Korteweg-de Vries equation, Phys. Rev. Letters 19 (1967), 1095-1097.
  • 13. Fritz Gesztesy, Helge Holden, Johanna Michor, and Gerald Teschl, Soliton equations and their algebro-geometric solutions. Vol. II, Cambridge Studies in Advanced Mathematics, vol. 114, Cambridge University Press, Cambridge, 2008. (1+1)-dimensional discrete models. MR 2446594
  • 14. -, The Ablowitz-Ladik hierarchy revisited, in Methods of Spectral Analysis in Math. Physics, J. Janas et al. (eds.), 139-190, Oper. Theory Adv. Appl., 186, Birkhäuser, Basel, 2008.
  • 15. Fritz Gesztesy, Helge Holden, Johanna Michor, and Gerald Teschl, Local conservation laws and the Hamiltonian formalism for the Ablowitz-Ladik hierarchy, Stud. Appl. Math. 120 (2008), no. 4, 361–423. MR 2416645, 10.1111/j.1467-9590.2008.00405.x
  • 16. H. Krüger and G. Teschl, Unique continuation for discrete nonlinear wave equations, arXiv:0904.0011.
  • 17. J. Michor, Inverse scattering transform for the Ablowitz-Ladik Hierarchy with quasi-periodic background, in preparation.
  • 18. G. Teschl, On the spatial asymptotics of solutions of the Toda lattice, Discrete Contin. Dyn. Sys. 273 (2010), no. 3, 1233-1239.
  • 19. Vadim E. Vekslerchik and Vladimir V. Konotop, Discrete nonlinear Schrödinger equation under nonvanishing boundary conditions, Inverse Problems 8 (1992), no. 6, 889–909. MR 1195946

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 37K40, 37K15, 35Q55, 37K10

Retrieve articles in all journals with MSC (2010): 37K40, 37K15, 35Q55, 37K10


Additional Information

Johanna Michor
Affiliation: Faculty of Mathematics, University of Vienna, Nordbergstrasse 15, 1090 Wien, Austria – and – International Erwin Schrödinger Institute for Mathematical Physics, Boltzmanngasse 9, 1090 Wien, Austria
Email: Johanna.Michor@univie.ac.at

DOI: https://doi.org/10.1090/S0002-9939-2010-10595-6
Keywords: Spatial asymptotics, Ablowitz–Ladik hierarchy
Received by editor(s): September 16, 2009
Published electronically: July 20, 2010
Additional Notes: This research was supported by the Austrian Science Fund (FWF) under Grant No. V120
Dedicated: Dedicated with great pleasure to Peter W. Michor on the occasion of his 60th birthday
Communicated by: Peter A. Clarkson
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.