On the spatial asymptotics of solutions of the Ablowitz-Ladik hierarchy

Author:
Johanna Michor

Journal:
Proc. Amer. Math. Soc. **138** (2010), 4249-4258

MSC (2010):
Primary 37K40, 37K15; Secondary 35Q55, 37K10

DOI:
https://doi.org/10.1090/S0002-9939-2010-10595-6

Published electronically:
July 20, 2010

MathSciNet review:
2680051

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that for decaying solutions of the Ablowitz-Ladik system, the leading asymptotic term is time independent. In addition, two arbitrary bounded solutions of the Ablowitz-Ladik system which are asymptotically close at the initial time stay close. All results are also derived for the associated hierarchy.

**1.**Mark J. Ablowitz, Gino Biondini, and Barbara Prinari,*Inverse scattering transform for the integrable discrete nonlinear Schrödinger equation with nonvanishing boundary conditions*, Inverse Problems**23**(2007), no. 4, 1711–1758. MR**2348731**, https://doi.org/10.1088/0266-5611/23/4/021**2.**M. J. Ablowitz and P. A. Clarkson,*Solitons, nonlinear evolution equations and inverse scattering*, London Mathematical Society Lecture Note Series, vol. 149, Cambridge University Press, Cambridge, 1991. MR**1149378****3.**M. J. Ablowitz and J. F. Ladik,*Nonlinear differential-difference equations*, J. Mathematical Phys.**16**(1975), 598–603. MR**0377223**, https://doi.org/10.1063/1.522558**4.**M. J. Ablowitz and J. F. Ladik,*Nonlinear differential-difference equations and Fourier analysis*, J. Mathematical Phys.**17**(1976), no. 6, 1011–1018. MR**0427867**, https://doi.org/10.1063/1.523009**5.**M. J. Ablowitz and J. F. Ladik,*A nonlinear difference scheme and inverse scattering*, Studies in Appl. Math.**55**(1976), no. 3, 213–229. MR**0471341****6.**M. J. Ablowitz and J. F. Ladik,*On the solution of a class of nonlinear partial difference equations*, Studies in Appl. Math.**57**(1976/77), no. 1, 1–12. MR**0492975****7.**M. J. Ablowitz, B. Prinari, and A. D. Trubatch,*Discrete and continuous nonlinear Schrödinger systems*, London Mathematical Society Lecture Note Series, vol. 302, Cambridge University Press, Cambridge, 2004. MR**2040621****8.**R. Abraham, J. E. Marsden, and T. Ratiu,*Manifolds, tensor analysis, and applications*, 2nd ed., Applied Mathematical Sciences, vol. 75, Springer-Verlag, New York, 1988. MR**960687****9.**I. N. Bondareva,*The Korteweg-de Vries equation in classes of increasing functions with prescribed asymptotic behaviour as*, Math. USSR Sb.**50**(1985), no. 1, 125-135. MR**0717670 (85h:35180)****10.**I. N. Bondareva and M. Shubin,*Increasing asymptotic solutions of the Korteweg-de Vries equation and its higher analogues*, Sov. Math. Dokl.**26**(1982), no. 3, 716-719. MR**0685832 (84k:35121)****11.**Klaus Deimling,*Ordinary differential equations in Banach spaces*, Lecture Notes in Mathematics, Vol. 596, Springer-Verlag, Berlin-New York, 1977. MR**0463601****12.**C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura,*A method for solving the Korteweg-de Vries equation*, Phys. Rev. Letters**19**(1967), 1095-1097.**13.**Fritz Gesztesy, Helge Holden, Johanna Michor, and Gerald Teschl,*Soliton equations and their algebro-geometric solutions. Vol. II*, Cambridge Studies in Advanced Mathematics, vol. 114, Cambridge University Press, Cambridge, 2008. (1+1)-dimensional discrete models. MR**2446594****14.**-,*The Ablowitz-Ladik hierarchy revisited*, in Methods of Spectral Analysis in Math. Physics, J. Janas et al. (eds.), 139-190, Oper. Theory Adv. Appl., 186, Birkhäuser, Basel, 2008.**15.**Fritz Gesztesy, Helge Holden, Johanna Michor, and Gerald Teschl,*Local conservation laws and the Hamiltonian formalism for the Ablowitz-Ladik hierarchy*, Stud. Appl. Math.**120**(2008), no. 4, 361–423. MR**2416645**, https://doi.org/10.1111/j.1467-9590.2008.00405.x**16.**H. Krüger and G. Teschl,*Unique continuation for discrete nonlinear wave equations*, arXiv:0904.0011.**17.**J. Michor,*Inverse scattering transform for the Ablowitz-Ladik Hierarchy with quasi-periodic background*, in preparation.**18.**G. Teschl,*On the spatial asymptotics of solutions of the Toda lattice*, Discrete Contin. Dyn. Sys.**273**(2010), no. 3, 1233-1239.**19.**Vadim E. Vekslerchik and Vladimir V. Konotop,*Discrete nonlinear Schrödinger equation under nonvanishing boundary conditions*, Inverse Problems**8**(1992), no. 6, 889–909. MR**1195946**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2010):
37K40,
37K15,
35Q55,
37K10

Retrieve articles in all journals with MSC (2010): 37K40, 37K15, 35Q55, 37K10

Additional Information

**Johanna Michor**

Affiliation:
Faculty of Mathematics, University of Vienna, Nordbergstrasse 15, 1090 Wien, Austria – and – International Erwin Schrödinger Institute for Mathematical Physics, Boltzmanngasse 9, 1090 Wien, Austria

Email:
Johanna.Michor@univie.ac.at

DOI:
https://doi.org/10.1090/S0002-9939-2010-10595-6

Keywords:
Spatial asymptotics,
Ablowitz–Ladik hierarchy

Received by editor(s):
September 16, 2009

Published electronically:
July 20, 2010

Additional Notes:
This research was supported by the Austrian Science Fund (FWF) under Grant No. V120

Dedicated:
Dedicated with great pleasure to Peter W. Michor on the occasion of his 60th birthday

Communicated by:
Peter A. Clarkson

Article copyright:
© Copyright 2010
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.