Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Joining primeness and disjointness from infinitely divisible systems


Authors: Mariusz Lemańczyk, François Parreau and Emmanuel Roy
Journal: Proc. Amer. Math. Soc. 139 (2011), 185-199
MSC (2010): Primary 37A05; Secondary 37A10, 37A30, 37A50
DOI: https://doi.org/10.1090/S0002-9939-2010-10457-4
Published electronically: July 2, 2010
MathSciNet review: 2729082
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that ergodic dynamical systems generated by infinitely divisible stationary processes are disjoint in the sense of Furstenberg from distally simple systems and systems whose maximal spectral type is singular with respect to the convolution of any two continuous measures.


References [Enhancements On Off] (What's this?)

  • 1. O.N. Ageev, On the spectrum of Cartesian powers of classical automorphisms (Russian), Mat. Zametki 68 (2000), 643-647; translation in Math. Notes 68 (2000), 547-551. MR 1835446 (2001m:37014)
  • 2. O.N. Ageev, Mixing with staircase multiplicity functions, Ergodic Theory Dynam. Systems 28 (2008), 1687-1700. MR 2465595 (2010c:37008)
  • 3. I.P. Cornfeld, S.V. Fomin, Ya.G. Sinai, Ergodic Theory, Springer-Verlag, New York, 1982. MR 832433 (87f:28019)
  • 4. B. Fayad, A. Windsor, A dichotomy between discrete and continuous spectrum for a class of special flows over rotations, J. Modern Dynam. 1 (2007), 107-122. MR 2261074 (2008c:37011)
  • 5. Y. Derriennic, K. Fraczek, M. Lemańczyk, F. Parreau, Ergodic automorphisms whose weak closure of off-diagonal measures consists of ergodic self-joinings, Coll. Math. 110 (2008), 81-115. MR 2353900 (2008j:37001)
  • 6. K. Fraczek, M. Lemańczyk, On symmetric logarithm and some old examples in smooth ergodic theory, Fund. Math. 180 (2003), 241-255. MR 2063628 (2005d:37043)
  • 7. K. Fraczek, M. Lemańczyk, A class of special flows over irrational rotations which is disjoint from mixing flows, Ergodic Theory Dynam. Systems 24 (2004), 1083-1095. MR 2085391 (2005m:37005)
  • 8. K. Fraczek, M. Lemańczyk, On mild mixing of special flows over irrational rotations under piecewise smooth maps, Ergodic Theory Dynam. Syst. 26 (2006), 719-738. MR 2237466 (2007f:37005)
  • 9. H. Furstenberg, Disjointness in ergodic theory, minimal sets and diophantine approximation, Math. Syst. Theory 1 (1967), 1-49. MR 0213508 (35:4369)
  • 10. H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory, Princeton Univ. Press, 1981. MR 603625 (82j:28010)
  • 11. E. Glasner, Ergodic Theory via Joinings, Math. Surveys and Monographs, vol. 101, Amer. Math. Soc., 2003. MR 1958753 (2004c:37011)
  • 12. B. Host, Mixing of all orders and pairwise independent joinings of systems with singular spectrum, Israel J. Math. 76 (1991), 289-298. MR 1177346 (93k:28022)
  • 13. B. Host, F. Méla, F. Parreau, Analyse Harmoniques des Mesures, Astérisque 135-136, 1986. MR 839692 (88a:43005)
  • 14. A. del Junco, M. Lemańczyk, Generic spectral properties of measure-preserving maps, and applications, Proc. Amer. Math. Soc. 115 (1992), 725-736. MR 1079889 (92i:28017)
  • 15. A. del Junco, M. Lemańczyk, Simple systems are disjoint from Gaussian systems, Studia Math. 133 (1999), 249-256. MR 1687223 (2000f:28020)
  • 16. A. del Junco, M. Lemańczyk, Joinings of distally simple systems, preprint (2005).
  • 17. A. del Junco, M. Rahe, L. Swanson, Chacon's automorphism has minimal self-joinings, J. Analyse Math. 37 (1980), 276-284. MR 583640 (81j:28027)
  • 18. A. del Junco, D. Rudolph, On ergodic actions whose self-joinings are graphs, Ergodic Theory Dynam. Systems 7 (1987), 531-551. MR 922364 (89e:28029)
  • 19. A. del Junco, D. Rudolph, A rank-one, rigid, simple, prime map, Ergodic Theory Dynam. Systems 7 (1987), 229-247. MR 896795 (88h:28016)
  • 20. A. Katok, Combinatorial constructions in ergodic theory and dynamics, Amer. Math. Soc., Providence, RI, 2003. MR 2008435 (2004m:37005)
  • 21. A. Katok, M. Lemańczyk, Some new cases of realization of spectral multiplicity function for ergodic transformations, Fundamenta Math. 206 (2009), 185-215.
  • 22. J. King, J.-P. Thouvenot, A canonical structure theorem for finite joining-rank maps, J. Analyse Math. 56 (1991), 211-230. MR 1243104 (94i:28013)
  • 23. M. Lemańczyk, F. Parreau, Special flows over irrational rotations with the simple convolution property, preprint (2007).
  • 24. M. Lemańczyk, M. Wysokińska, On analytic flows on the torus which are disjoint from systems of probabilistic origin, Fund. Math. 195 (2007), 97-127. MR 2320765 (2008i:37010)
  • 25. F. Parreau, E. Roy, Joinings of Poisson suspensions, preprint (2007).
  • 26. A.A. Prikhodko, V.V. Ryzhikov, Disjointness of the convolutions for Chacon's automorphism. Dedicated to the memory of Anzelm Iwanik, Colloq. Math. 84/85 (2000), 67-74. MR 1778840 (2001i:37007)
  • 27. M. Ratner, Horocycle flows, joinings and rigidity of products, Annals of Math. (2) 118 (1983), 277-313. MR 717825 (85k:58063)
  • 28. J. Rosiński, T. Żak, The equivalence of ergodicity and weak mixing for infinitely divisible processes, J. Theoret. Probab. 10 (1997), 73-86. MR 1432616 (97m:60044)
  • 29. E. Roy, Ergodic properties of Poissonian ID processes, Ann. Probab. 23 (2007), 1163-1187. MR 2308588 (2008d:60054)
  • 30. E. Roy, Mesures de Poisson, infinie divisibilité et propriétés ergodiques, thesis, 2005, Univ. of Paris VI. http://www.math.univ-paris13.fr/$ \sim$ roy/TheseRoy.pdf
  • 31. V.V. Ryzhikov, Joinings, wreath products, factors, and mixing properties of dynamical systems, Russian Acad. Sci. Izv. Math. 42 (1994), 91-114. MR 1220583 (94h:28016)
  • 32. V.V. Ryzhikov, Weak limits of powers, the simple spectrum of symmetric products, and mixing constructions of rank $ 1$, Mat. Sb. 198 (2007), 137-159; translation in Sb. Math. 198 (2007), 733-754. MR 2354530 (2008m:37008)
  • 33. V.V. Ryzhikov, J.-P. Thouvenot, Disjointness, divisibility, and quasi-simplicity of measure-preserving actions, Functional Analysis and its Appl. 40 - 3 (2006), 237-240. MR 2265691 (2007i:37005)
  • 34. J.-P. Thouvenot, Some properties and applications of joinings in ergodic theory, in: Ergodic Theory and Its Connections with Harmonic Analysis, London Math. Soc., Lecture Notes Ser. 205, Cambridge Univ. Press, 1995, 207-235. MR 1325699 (96d:28017)
  • 35. J.-P. Thouvenot, Les systèmes simples sont disjoints de ceux qui sont infiniment divisibles et plongeables dans un flot. Dedicated to the memory of Anzelm Iwanik, Coll. Math. 84-85 (2000), 481-483. MR 1784209 (2001i:28022)
  • 36. W.A. Veech, A criterion for a process to be prime, Monatsh. Math. 94 (1982), 335-341. MR 685378 (84d:28026)
  • 37. D. Volný, Constructions of smooth and analytic cocycles over irrational circle rotations, Comment. Math. Univ. Carolinae 36, 4 (1995), 745 - 764. MR 1378696 (97j:28041)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 37A05, 37A10, 37A30, 37A50

Retrieve articles in all journals with MSC (2010): 37A05, 37A10, 37A30, 37A50


Additional Information

Mariusz Lemańczyk
Affiliation: Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, ul. Chopina 12/18, 87–100 Toruń, Poland
Email: mlem@mat.uni.torun.pl

François Parreau
Affiliation: Laboratoire d’Analyse, Géométrie et Applications, UMR 7539 Université Paris 13 et CNRS, 99 av. J.-B. Clément, 93430 Villetaneuse, France
Email: parreau@math.univ-paris13.fr

Emmanuel Roy
Affiliation: Laboratoire d’Analyse, Géométrie et Applications, UMR 7539 Université Paris 13 et CNRS, 99 av. J.-B. Clément, 93430 Villetaneuse, France
Email: roy@math.univ-paris13.fr

DOI: https://doi.org/10.1090/S0002-9939-2010-10457-4
Keywords: Joinings, disjointness, infinite divisibility, distal simplicity, spectral singularity and convolutions
Received by editor(s): October 28, 2009
Received by editor(s) in revised form: February 22, 2010
Published electronically: July 2, 2010
Additional Notes: The research of the first author is partially supported by Polish MNiSzW grant N N201 384834, Marie Curie “Transfer of Knowledge” EU program, project MTKD-CT-2005-030042 (TODEQ)
The research of the first and third authors is partially supported by the MSRI (Berkeley) program “Ergodic Theory and Additive Combinatorics”
Communicated by: Bryna Kra
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society