Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Nearest neighbour distance and dimension of intensity measure of Poisson point process

Author: Radosław Wieczorek
Journal: Proc. Amer. Math. Soc. 139 (2011), 139-152
MSC (2010): Primary 28A80; Secondary 60G55
Published electronically: June 29, 2010
MathSciNet review: 2729078
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that the upper and lower local dimensions of a finite measure $ \mu$ are equal to the upper and lower limit of $ -\log \alpha / \log \hat{r}_{\alpha \mu}(x)$, where $ \hat{r}_{\alpha \mu}(x)$ is the mean distance to the closest point for the Poisson point processes with intensity measure $ \alpha \mu$. Moreover the upper local dimension of $ \mu$ is a.e. bounded from above by the limit superior of $ -\log \alpha / \log \hat{r}_{\alpha \mu}$, where $ \hat{r}_{\alpha \mu}$ denotes the expected nearest-neighbour distance.

References [Enhancements On Off] (What's this?)

  • 1. P. Asvestas, S. Golemati, G. K. Matsopoulos, K. S. Nikita, and A. N. Nicolaides, Fractal dimension estimation of carotid atherosclerotic plaques from B-mode ultrasound: a pilot study, Ultrasound in Medicine and Biology 28 (2002), no. 9, 1129-1136.
  • 2. R. Badii and A. Politi, Hausdorff dimension and uniformity factor of strange attractors, Phys. Rev. Lett. 52 (1984), no. 19, 1661-1664. MR 741988 (85m:58120)
  • 3. -, Statistical description of chaotic attractors: the dimension function, J. Statist. Phys. 40 (1985), no. 5-6, 725-750. MR 806722 (87c:58067)
  • 4. H. Bauer, Measure and integration theory, de Gruyter Studies in Mathematics, vol. 26, Walter de Gruyter & Co., Berlin, 2001, translated from the German by Robert B. Burckel. MR 1897176 (2003a:28001)
  • 5. P.J. Clark and F.C. Evans, Distance to nearest neighbor as a measure of spatial relationships in populations, Ecology 35 (1954), 445-453.
  • 6. C. D. Cutler and D. A. Dawson, Estimation of dimension for spatially distributed data and related limit theorems, J. Multivar. Anal. 28 (1989), no. 1, 115-148. MR 996987 (90m:62116)
  • 7. D. J. Daley and D. Vere-Jones, An introduction to the theory of point processes. Vol. I, Elementary theory and methods, second ed., Probability and its Applications (New York), Springer-Verlag, New York, 2003. MR 1950431 (2004c:60001)
  • 8. S. G. De Bartolo, M. Veltri, and L. Primavera, Estimated generalized dimensions of river networks, Journal of Hydrology 322 (2006), no. 1-4, 181-191.
  • 9. K. Falconer, Fractal geometry. second edition, John Wiley and Sons, Chichester, 2003. MR 2118797 (2006b:28001)
  • 10. M. Guysinsky and S. Yaskolko, Coincidence of various dimensions associated with metrics and measures on metric spaces, Discrete Contin. Dynam. Systems 3 (1997), no. 4, 591-603. MR 1465128 (98g:58101)
  • 11. P. A. Henderson, Practical methods in ecology, Wiley-Blackwell, 2003.
  • 12. H. G. E. Hentschel and I. Procaccia, The infinite number of generalized dimensions of fractals and strange attractors, Phys. D 8 (1983), no. 3, 435-444. MR 719636 (85a:58064)
  • 13. J. Illian, A. Penttinen, H. Stoyan, and D. Stoyan, Statistical analysis and modelling of spatial point patterns, John Wiley & Sons Ltd., Chichester, 2008. MR 2384630 (2008k:62004)
  • 14. J. F. C. Kingman, Poisson processes, Oxford Studies in Probability, vol. 3, Oxford University Press, New York, 1993. MR 1207584 (94a:60052)
  • 15. E. J. Kostelich and H. L. Swinney, Practical considerations in estimating dimension from time series data, Physica Scripta 40 (1989), no. 3, 436-441.
  • 16. R. Lopes and N. Betrouni, Fractal and multifractal analysis: A review, Medical Image Analysis 13 (2009), no. 4, 634-649.
  • 17. Ya. B. Pesin, On rigorous mathematical definitions of correlation dimension and generalized spectrum for dimensions, Journal of Statistical Physics 71 (1993), no. 3-4, 529-547. MR 1219021 (94d:28008)
  • 18. -, Dimension theory in dynamical systems, Contemporary views and applications, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1997. MR 1489237 (99b:58003)
  • 19. R. Rudnicki, Pointwise dimensions and Rényi dimensions, Proc. Amer. Math. Soc. 130 (2002), no. 7, 1981-1982. MR 1896030 (2003a:28016)
  • 20. D. Stoyan and H. Stoyan, Fractals, random shapes and point fields, John Wiley & Sons, Chichester, 1994. MR 1297125 (95h:60016)
  • 21. Y. Termonia and Z. Alexandrowicz, Fractal dimension of strange attractors from radius versus size of arbitrary clusters, Phys. Rev. Lett. 51 (1983), no. 14, 1265-1268. MR 718464 (84k:58155)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 28A80, 60G55

Retrieve articles in all journals with MSC (2010): 28A80, 60G55

Additional Information

Radosław Wieczorek
Affiliation: Institute of Mathematics, Polish Academy of Sciences, ul. Bankowa 14, 40-007 Katowice, Poland

Keywords: Pointwise dimension, nearest-neighbour distance, measure, Poisson point processes
Received by editor(s): October 5, 2009
Received by editor(s) in revised form: November 6, 2009, February 6, 2010, and February 18, 2010
Published electronically: June 29, 2010
Additional Notes: This research was partially supported by the State Committee for Scientific Research (Poland) Grant No. N N201 0211 33 and by EC FP6 Marie Curie ToK programme SPADE2, MTKD-CT-2004-014508 and Polish MNiSW SPB-M
Communicated by: Edward C. Waymire
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society