Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Solutions for nonlinear elliptic equations with general weight in the Sobolev-Hardy space


Authors: Yimin Zhang, Jun Yang and Yaotian Shen
Journal: Proc. Amer. Math. Soc. 139 (2011), 219-230
MSC (2010): Primary 35J65, 35J40
DOI: https://doi.org/10.1090/S0002-9939-2010-10468-9
Published electronically: July 8, 2010
MathSciNet review: 2729085
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we apply Morse theory to study the existence of nontrivial solutions for nonlinear elliptic equations with general weight and Hardy potential in the Sobolev-Hardy space.


References [Enhancements On Off] (What's this?)

  • 1. Adimurthi, N. Chaudhuri, M. Ramaswamy, An improved Hardy-Sobolev inequality and its application. Proc. Amer. Math. Soc., 130 (2002), 489-505. MR 1862130 (2002j:35232)
  • 2. Adimurthi, M.J. Esteban, An improved Hardy-Sobolev inequality in $ W^{1,p}$ and its application to Schrödinger operators. Nonlinear Differ. Equ. Appl., 12 (2005), 243-263. MR 2184082 (2006g:26033)
  • 3. Adimurthi, K. Sandeep, Existence and non-existence of the first eigenvalue of the perturbed Hardy-Sobolev operator. Proc. Roy. Soc. Edinburgh Sect. A, 132 (2002), 1021-1043. MR 1938711 (2003i:35210)
  • 4. G. Barbatis, S. Filippas, A. Tertikas, A unified approach to improved $ L^p$ Hardy inequalities with best constants. Trans. Amer. Math. Soc., 356 (2004), 2169-2196. MR 2048514 (2005a:26016)
  • 5. P. Caldiroli, R. Musina, On a variational degenerate elliptic problem. Nonlinear Differ. Equ. Appl., 7 (2000), 187-199. MR 1771466 (2001g:35090)
  • 6. K. C. Chang, Infinite dimensional Morse theory and multiple solution problems, Progress in Nonlinear Differential Equations and Their Applications. Vol. 6, Birkhäuser, Boston, 1993. MR 1196690 (94e:58023)
  • 7. J-N. Corvellec, Morse theory for continuous functionals. J. Math. Anal. Appl., 196 (1995), 1050-1072. MR 1365240 (96m:58037)
  • 8. F. Fang, S.B. Liu, Nontrivial solutions of superlinear p-Laplacian equations. J. Math. Anal. Appl., 351 (2009), 138-146. MR 2472927 (2010a:35060)
  • 9. A. Ferrero, F. Gazzola, Existence of solutions for singular critical growth semilinear elliptic equations. J. Differ. Equ., 177 (2001), 494-522. MR 1876652 (2002m:35068)
  • 10. J.P. Garcia Azorero, I. Peral Alonso, Hardy inequalities and some critical elliptic and parabolic problems. J. Differ. Equ., 144 (1998), 446-476. MR 1616905 (99f:35099)
  • 11. Q.S. Jiu, J.B. Su, Existence and multiplicity results for Dirichlet problems with p-Laplacian. J. Math. Anal. Appl., 281 (2003), 587-601. MR 1982676 (2004e:35068)
  • 12. J.Q. Liu, The Morse index of a saddle point. Systems Sci. Math. Sci., 2 (1989), 32-39. MR 1110119 (92e:58041)
  • 13. J.Q. Liu, J.B. Su, Remarks on multiple nontrivial solutions for quasi-linear resonant problems. J. Math. Anal. Appl., 258 (2001), 209-222. MR 1828101 (2002g:35083)
  • 14. Y.T. Shen, Zh.H. Chen, Nonlinear degenerate elliptic equation with Hardy potential and critical parameter. Nonlinear Anal., 69 (2008), 1462-1477. MR 2426707 (2009i:35116)
  • 15. Y.T. Shen, Zh.H. Chen, Sobolev-Hardy space with general weight. J. Math. Anal. Appl., 320 (2006), 675-690. MR 2225986 (2007a:46037)
  • 16. Y.T. Shen, X.K. Guo, Weighted Poincaré inequalities on unbounded domains and nonlinear elliptic boundary value problems. Acta Math. Sci. Ser. B Engl. Ed., (3)4 (1984), 277-286. MR 812926 (87d:35054)
  • 17. Y.T. Shen, Y.X. Yao, Nonlinear elliptic equations with critical potential and critical parameter. Proc. Roy. Soc. Edinburgh, 136A (2006), 1041-1051. MR 2266400 (2008f:35136)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 35J65, 35J40

Retrieve articles in all journals with MSC (2010): 35J65, 35J40


Additional Information

Yimin Zhang
Affiliation: Department of Mathematics, South China University of Technology, Guangzhou 510640, People’s Republic of China
Email: ymin.zhang@mail.scut.edu.cn

Jun Yang
Affiliation: Department of Mathematics, South China University of Technology, Guangzhou 510640, People’s Republic of China
Email: yangjun@scut.edu.cn

Yaotian Shen
Affiliation: Department of Mathematics, South China University of Technology, Guangzhou 510640, People’s Republic of China
Email: maytshen@scut.edu.cn

DOI: https://doi.org/10.1090/S0002-9939-2010-10468-9
Keywords: Morse theory, the PSC condition, critical groups, Sobolev-Hardy space
Received by editor(s): November 19, 2009
Received by editor(s) in revised form: February 26, 2010
Published electronically: July 8, 2010
Additional Notes: The project was supported in part by the National Natural Science Foundation of China (10771074), the NNSF of China (No. 10801055) and the Doctoral Program of NEM of China (No. 200805611026).
Communicated by: Yingfei Yi
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society