A class of Hilbert series and the strong Lefschetz property

Author:
Melissa Lindsey

Journal:
Proc. Amer. Math. Soc. **139** (2011), 79-92

MSC (2010):
Primary 13A02; Secondary 13C05

Published electronically:
July 1, 2010

MathSciNet review:
2729072

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We determine the class of Hilbert series so that if is a finitely generated zero-dimensional -graded module with the strong Lefschetz property, then has the strong Lefschetz property for an indeterminate and all positive integers if and only if the Hilbert series of is in . Given two finite graded -modules and with the strong Lefschetz property, we determine sufficient conditions in order that has the strong Lefschetz property.

**1.**Young Hyun Cho and Jung Pil Park,*Conditions for generic initial ideals to be almost reverse lexicographic*, J. Algebra**319**(2008), no. 7, 2761–2771. MR**2397406**, 10.1016/j.jalgebra.2008.01.014**2.**D. Cook II and U. Nagel, The Weak Lefschetz Property, Monomial Ideals, and Lozenges (2009), arXiv:math/0909.3509v1 [math.AC]**3.**David Eisenbud,*Commutative algebra*, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. With a view toward algebraic geometry. MR**1322960****4.**Ralf Fröberg,*An inequality for Hilbert series of graded algebras*, Math. Scand.**56**(1985), no. 2, 117–144. MR**813632****5.**Tadahito Harima, Juan C. Migliore, Uwe Nagel, and Junzo Watanabe,*The weak and strong Lefschetz properties for Artinian 𝐾-algebras*, J. Algebra**262**(2003), no. 1, 99–126. MR**1970804**, 10.1016/S0021-8693(03)00038-3**6.**Tadahito Harima and Junzo Watanabe,*The strong Lefschetz property for Artinian algebras with non-standard grading*, J. Algebra**311**(2007), no. 2, 511–537. MR**2314722**, 10.1016/j.jalgebra.2007.01.019**7.**J. Herzog and D. Popescu, The Strong Lefschetz Property and Simple Extensions (2005) arXiv:math/0506537v1 [math.AC]**8.**Hidemi Ikeda,*Results on Dilworth and Rees numbers of Artinian local rings*, Japan. J. Math. (N.S.)**22**(1996), no. 1, 147–158. MR**1394376****9.**Serge Lang,*Algebra*, 3rd ed., Graduate Texts in Mathematics, vol. 211, Springer-Verlag, New York, 2002. MR**1878556****10.**J. Migliore and R. M. Miró-Roig,*Ideals of general forms and the ubiquity of the weak Lefschetz property*, J. Pure Appl. Algebra**182**(2003), no. 1, 79–107. MR**1978001**, 10.1016/S0022-4049(02)00314-6**11.**J. Migliore, R. M. Miró-Roig, and U. Nagel, Monomial Ideals, Almost Complete Intersections and the Weak Lefschetz Property, Transactions of the American Math. Society, to appear.**12.**K. Pardue, Nonstandard Borel Fixed Ideals, Thesis, Brandeis University, 1994.**13.**K. Pardue, Generic Sequences of Polynomials, J. Algebra**324**(2010), no. 4, 579-590.**14.**Les Reid, Leslie G. Roberts, and Moshe Roitman,*On complete intersections and their Hilbert functions*, Canad. Math. Bull.**34**(1991), no. 4, 525–535. MR**1136655**, 10.4153/CMB-1991-083-9**15.**Richard P. Stanley,*Weyl groups, the hard Lefschetz theorem, and the Sperner property*, SIAM J. Algebraic Discrete Methods**1**(1980), no. 2, 168–184. MR**578321**, 10.1137/0601021**16.**Junzo Watanabe,*The Dilworth number of Artinian rings and finite posets with rank function*, Commutative algebra and combinatorics (Kyoto, 1985) Adv. Stud. Pure Math., vol. 11, North-Holland, Amsterdam, 1987, pp. 303–312. MR**951211****17.**Fabrizio Zanello and Jeffery V. Zylinski,*Forcing the strong Lefschetz and the maximal rank properties*, J. Pure Appl. Algebra**213**(2009), no. 6, 1026–1030. MR**2498794**, 10.1016/j.jpaa.2008.11.015

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2010):
13A02,
13C05

Retrieve articles in all journals with MSC (2010): 13A02, 13C05

Additional Information

**Melissa Lindsey**

Affiliation:
Department of Mathematics, Purdue University, West Lafayette, Indiana 47907-2067

Email:
lindsey9@math.purdue.edu

DOI:
http://dx.doi.org/10.1090/S0002-9939-2010-10498-7

Keywords:
Hilbert series,
strong Lefschetz property

Received by editor(s):
September 11, 2009

Received by editor(s) in revised form:
March 11, 2010

Published electronically:
July 1, 2010

Communicated by:
Bernd Ulrich

Article copyright:
© Copyright 2010
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.