A class of Hilbert series and the strong Lefschetz property
Author:
Melissa Lindsey
Journal:
Proc. Amer. Math. Soc. 139 (2011), 7992
MSC (2010):
Primary 13A02; Secondary 13C05
Published electronically:
July 1, 2010
MathSciNet review:
2729072
Fulltext PDF
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We determine the class of Hilbert series so that if is a finitely generated zerodimensional graded module with the strong Lefschetz property, then has the strong Lefschetz property for an indeterminate and all positive integers if and only if the Hilbert series of is in . Given two finite graded modules and with the strong Lefschetz property, we determine sufficient conditions in order that has the strong Lefschetz property.
 1.
Young
Hyun Cho and Jung
Pil Park, Conditions for generic initial ideals to be almost
reverse lexicographic, J. Algebra 319 (2008),
no. 7, 2761–2771. MR 2397406
(2009c:13037), http://dx.doi.org/10.1016/j.jalgebra.2008.01.014
 2.
D. Cook II and U. Nagel, The Weak Lefschetz Property, Monomial Ideals, and Lozenges (2009), arXiv:math/0909.3509v1 [math.AC]
 3.
David
Eisenbud, Commutative algebra, Graduate Texts in Mathematics,
vol. 150, SpringerVerlag, New York, 1995. With a view toward
algebraic geometry. MR 1322960
(97a:13001)
 4.
Ralf
Fröberg, An inequality for Hilbert series of graded
algebras, Math. Scand. 56 (1985), no. 2,
117–144. MR
813632 (87f:13022)
 5.
Tadahito
Harima, Juan
C. Migliore, Uwe
Nagel, and Junzo
Watanabe, The weak and strong Lefschetz properties for Artinian
𝐾algebras, J. Algebra 262 (2003),
no. 1, 99–126. MR 1970804
(2004b:13001), http://dx.doi.org/10.1016/S00218693(03)000383
 6.
Tadahito
Harima and Junzo
Watanabe, The strong Lefschetz property for Artinian algebras with
nonstandard grading, J. Algebra 311 (2007),
no. 2, 511–537. MR 2314722
(2008a:16030), http://dx.doi.org/10.1016/j.jalgebra.2007.01.019
 7.
J. Herzog and D. Popescu, The Strong Lefschetz Property and Simple Extensions (2005) arXiv:math/0506537v1 [math.AC]
 8.
Hidemi
Ikeda, Results on Dilworth and Rees numbers of Artinian local
rings, Japan. J. Math. (N.S.) 22 (1996), no. 1,
147–158. MR 1394376
(97g:13034)
 9.
Serge
Lang, Algebra, 3rd ed., Graduate Texts in Mathematics,
vol. 211, SpringerVerlag, New York, 2002. MR 1878556
(2003e:00003)
 10.
J.
Migliore and R.
M. MiróRoig, Ideals of general forms and the ubiquity of
the weak Lefschetz property, J. Pure Appl. Algebra
182 (2003), no. 1, 79–107. MR 1978001
(2004c:13027), http://dx.doi.org/10.1016/S00224049(02)003146
 11.
J. Migliore, R. M. MiróRoig, and U. Nagel, Monomial Ideals, Almost Complete Intersections and the Weak Lefschetz Property, Transactions of the American Math. Society, to appear.
 12.
K. Pardue, Nonstandard Borel Fixed Ideals, Thesis, Brandeis University, 1994.
 13.
K. Pardue, Generic Sequences of Polynomials, J. Algebra 324 (2010), no. 4, 579590.
 14.
Les
Reid, Leslie
G. Roberts, and Moshe
Roitman, On complete intersections and their Hilbert
functions, Canad. Math. Bull. 34 (1991), no. 4,
525–535. MR 1136655
(93b:13025), http://dx.doi.org/10.4153/CMB19910839
 15.
Richard
P. Stanley, Weyl groups, the hard Lefschetz theorem, and the
Sperner property, SIAM J. Algebraic Discrete Methods
1 (1980), no. 2, 168–184. MR 578321
(82j:20083), http://dx.doi.org/10.1137/0601021
 16.
Junzo
Watanabe, The Dilworth number of Artinian rings and finite posets
with rank function, Commutative algebra and combinatorics (Kyoto,
1985) Adv. Stud. Pure Math., vol. 11, NorthHolland, Amsterdam,
1987, pp. 303–312. MR 951211
(89k:13015)
 17.
Fabrizio
Zanello and Jeffery
V. Zylinski, Forcing the strong Lefschetz and the maximal rank
properties, J. Pure Appl. Algebra 213 (2009),
no. 6, 1026–1030. MR 2498794
(2010b:13034), http://dx.doi.org/10.1016/j.jpaa.2008.11.015
 1.
 Y. H. Cho and J. P. Park, Conditions for generic initial ideals to be almost reverse lexicographic, J. Algebra 319 (2008), no. 7, 27612771. MR 2397406 (2009c:13037)
 2.
 D. Cook II and U. Nagel, The Weak Lefschetz Property, Monomial Ideals, and Lozenges (2009), arXiv:math/0909.3509v1 [math.AC]
 3.
 D. Eisenbud, Commutative Algebra with a View toward Algebraic Geometry, SpringerVerlag, New York, 1995. MR 1322960 (97a:13001)
 4.
 R. Fröberg, An inequality for Hilbert series of graded algebras, Math. Scand. 56 (1985), no. 2, 117144. MR 813632 (87f:13022)
 5.
 T. Harima, J. Migliore, U. Nagel, and J. Watanabe, The weak and strong Lefschetz properties for Artinian algebras, J. Algebra 262 (2003), no. 1, 99126. MR 1970804 (2004b:13001)
 6.
 T. Harima and J. Watanabe, The strong Lefschetz property for Artinian algebras with nonstandard grading, J. Algebra 311 (2007), no. 2, 511537. MR 2314722 (2008a:16030)
 7.
 J. Herzog and D. Popescu, The Strong Lefschetz Property and Simple Extensions (2005) arXiv:math/0506537v1 [math.AC]
 8.
 H. Ikeda, Results on Dilworth and Rees numbers of Artinian local rings, Japan. J. Math. (N.S.) 22 (1996), no. 1, 147158. MR 1394376 (97g:13034)
 9.
 S. Lang, Algebra, revised third edition, Springer, New York, 2002. MR 1878556 (2003e:00003)
 10.
 J. Migliore and R. M. MiróRoig, Ideals of general forms and the ubiquity of the weak Lefschetz property, J. Pure Appl. Algebra 182 (2003), no. 1, 79107. MR 1978001 (2004c:13027)
 11.
 J. Migliore, R. M. MiróRoig, and U. Nagel, Monomial Ideals, Almost Complete Intersections and the Weak Lefschetz Property, Transactions of the American Math. Society, to appear.
 12.
 K. Pardue, Nonstandard Borel Fixed Ideals, Thesis, Brandeis University, 1994.
 13.
 K. Pardue, Generic Sequences of Polynomials, J. Algebra 324 (2010), no. 4, 579590.
 14.
 L. Reid, L. G. Roberts, and M. Roitman, On Complete Intersection and Their Hilbert Functions, Canad. Math Bull. 34 (1991), no. 4, 525535. MR 1136655 (93b:13025)
 15.
 R. P. Stanley, Weyl groups, the hard Lefschetz theorem, and the Sperner property, SIAM J. Algebraic Discrete Methods 1 (1980), no. 2, 168184. MR 578321 (82j:20083)
 16.
 J. Watanabe, The Dilworth number of Artinian rings and finite posets with rank function, in Commutative algebra and combinatorics (Kyoto, 1985), 303312, Adv. Stud. Pure Math., 11, NorthHolland, Amsterdam. MR 951211 (89k:13015)
 17.
 F. Zanello and J. V. Zylinski, Forcing the strong Lefschetz and the maximal rank properties, J. Pure Appl. Algebra 213 (2009), no. 6, 10261030. MR 2498794 (2010b:13034)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (2010):
13A02,
13C05
Retrieve articles in all journals
with MSC (2010):
13A02,
13C05
Additional Information
Melissa Lindsey
Affiliation:
Department of Mathematics, Purdue University, West Lafayette, Indiana 479072067
Email:
lindsey9@math.purdue.edu
DOI:
http://dx.doi.org/10.1090/S000299392010104987
PII:
S 00029939(2010)104987
Keywords:
Hilbert series,
strong Lefschetz property
Received by editor(s):
September 11, 2009
Received by editor(s) in revised form:
March 11, 2010
Published electronically:
July 1, 2010
Communicated by:
Bernd Ulrich
Article copyright:
© Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.
