Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Proof of the Alder-Andrews conjecture


Authors: Claudia Alfes, Marie Jameson and Robert J. Lemke Oliver
Journal: Proc. Amer. Math. Soc. 139 (2011), 63-78
MSC (2010): Primary 11P82, 11P84
DOI: https://doi.org/10.1090/S0002-9939-2010-10500-2
Published electronically: July 19, 2010
MathSciNet review: 2729071
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Motivated by classical identities of Euler, Schur, and Rogers and Ramanujan, Alder investigated $ q_d(n)$ and $ Q_d(n),$ the number of partitions of $ n$ into $ d$-distinct parts and into parts which are $ \pm 1 (\operatorname{mod}d+3)$, respectively. He conjectured that $ q_d(n) \geq Q_d(n).$ Andrews and Yee proved the conjecture for $ d = 2^s-1$ and also for $ d \geq 32.$ We complete the proof of Andrews's refinement of Alder's conjecture by determining effective asymptotic estimates for these partition functions (correcting and refining earlier work of Meinardus), thereby reducing the conjecture to a finite computation.


References [Enhancements On Off] (What's this?)

  • 1. G. E. Andrews.
    On a partition problem of H. L. Alder.
    Pacific J. Math., 36:279-284, 1971. MR 0289445 (44:6635)
  • 2. G. E. Andrews.
    The theory of partitions.
    Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1976.
    Encyclopedia of Mathematics and its Applications, Vol. 2. MR 0557013 (58:27738)
  • 3. G. E. Andrews and K. Eriksson.
    Integer partitions.
    Cambridge University Press, Cambridge, 2004. MR 2122332 (2006b:11125)
  • 4. T. M. Apostol.
    Introduction to analytic number theory.
    Undergraduate Texts in Mathematics.
    Springer-Verlag, New York, 1976. MR 0434929 (55:7892)
  • 5. K. Bringmann and K. Ono.
    Coefficients of harmonic Maass forms, Proceedings of the 2008 University of Florida Conference on Partitions, $ q$-series, and modular forms,
    accepted for publication.
  • 6. G. Meinardus.
    Asymptotische Aussagen über Partitionen.
    Math. Z., 59:388-398, 1954. MR 0062781 (16:17e)
  • 7. G. Meinardus.
    Über Partitionen mit Differenzenbedingungen.
    Math. Z., 61:289-302, 1954. MR 0068570 (16:905a)
  • 8. V. V. Subrahmanyasastri.
    Partitions with congruence conditions.
    J. Indian Math. Soc. (N.S.), 36:177-194 (1973), 1972. MR 0325560 (48:3907)
  • 9. A. J. Yee.
    Partitions with difference conditions and Alder's conjecture.
    Proc. Natl. Acad. Sci. USA, 101(47):16417-16418 (electronic), 2004. MR 2114815 (2005i:05010)
  • 10. A. J. Yee.
    Alder's conjecture.
    J. Reine Angew. Math., 616:67-88, 2008. MR 2369487 (2008m:11205)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 11P82, 11P84

Retrieve articles in all journals with MSC (2010): 11P82, 11P84


Additional Information

Claudia Alfes
Affiliation: Lehrstuhl A für Mathematik, RWTH Aachen, Templergraben 64, D-52062 Aachen, Germany
Address at time of publication: Fachbereich Mathematik, Technische Universität Darmstadt, Schlossegartenstrasse 7, D-64289 Darmstadt, Germany
Email: claudia.alfes@matha.rwth-aachen.de

Marie Jameson
Affiliation: Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706
Address at time of publication: Department of Mathematics and Computer Science, Emory University, Atlanta, Georgia 30322
Email: marie.jameson@gmail.com

Robert J. Lemke Oliver
Affiliation: Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706
Address at time of publication: Department of Mathematics and Computer Science, Emory University, Atlanta, Georgia 30322
Email: lemkeoliver@gmail.com

DOI: https://doi.org/10.1090/S0002-9939-2010-10500-2
Received by editor(s): March 10, 2010
Published electronically: July 19, 2010
Communicated by: Kathrin Bringmann
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society